

 i

Rohan Banerjee

www.bpbonline.com

Hands-on TinyML
Harness the power of Machine Learning

on the edge devices

ii

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-446

www.bpbonline.com

 iii

Dedicated to
My Beloved Little Niece:

Arjama

iv

About the Author

Rohan Banerjee is a practicing data scientist having more than 12 years of relevant
industry experience. He completed his M.Tech from IIT Kharagpur in 2011. His
areas of interest include advanced data science, machine learning, embedded
machine learning, digital signal and image processing. Rohan is currently
associated with Baker Hughes Company. Before that, he was with TCS Research,
Tata Consultancy Services where he published more than 40 technical papers
in international conferences, journals, and also contributed in enhancing their
intellectual property portfolio. Rohan is an avid reader of contemporary literature,
a traveler, and a quiz enthusiast.

 v

About the Reviewers

• Tushar Chugh is a machine learning engineer at Google, focusing on search
ranking. With a background in robotics from Carnegie Mellon University, he
previously contributed to GM’s self-driving car perception systems. Passionate
about applied machine learning, deep learning, and computer vision, Tushar
has experience developing innovative technologies at Qualcomm and Microsoft
in ML and tech domains.

• Yogesh M Iggalore has over a decade of experience in product development
and is actively involved in all the disciplines of product architecture, hardware
design, firmware development, testing, and cloud integration. He is currently
interested in product development in TinyML.

vi

Acknowledgements

There are many people I want to express my gratitude to. First and foremost, I
would like to sincerely thank my family members for their unwavering support
and encouragement throughout my journey — I could have never completed this
book without their support.

I am grateful to various online resources, blogs, and materials that enriched my
learning in order to write the book. I would also like to acknowledge the valuable
feedbacks of my colleagues and co-workers during many years working in the
tech industry. I am particularly grateful to Mr. Avik Ghose from TCS Research
for providing me the opportunity to learn and work on TinyML. I gratefully
acknowledge the effort of Mr. Tushar Chugh and Mr. Yogesh M Iggalore for their
technical scrutiny and suggestions for improving the quality of this book.

My sincere gratitude also goes to the team at BPB Publication for being supportive
enough to provide me quite a long time to finish the book and also for all the
valuable editorial reviews.

Finally, I would like to thank all the readers who have taken an interest in the
book. Your encouragement has been invaluable.

 vii

Preface

TinyML is an emerging trend in machine learning, that aims at deploying complex
machine learning and neural network models on low-powered tiny edge devices
and microcontrollers. Modern deep learning algorithms are computationally
expensive and result in large model size. They are often hosted on dedicated
servers having enormous computing resources. As users, we generate the data
at our end and send them via the internet to process remotely. Owing to the
limitations in network bandwidth, roughly 10% of all our data can be sent over
the internet. Processing of the data on the edge can revolutionize the current
paradigm. Thanks to TinyML, large machine learning models can be shrunk in
order to effectively deploy on smaller devices having few hundred kilobytes of
RAM and few megabytes of flash memory. Such devices can operate 24x7 with a
minimum power consumption. Moreover, being entirely offline, the applications
not only consumes zero network bandwidth, but also preserves user privacy.

TinyML is going to be the next big thing in machine learning. Major tech giants
are heavily investing in standardizing the hardware and software stack. In this
book, we cover the basic concepts of TinyML through practical coding examples
to enable the readers to learn the basic concepts of TinyML and develop their own
applications. Rather than discussing every single mathematical concept behind
the machine learning algorithms, the book primarily focuses on end-to-end
application development through coding examples. The projects covered in this
book are implemented in open-source software commonly used in industry and
academics.

This book is divided into 10 chapters. The details are listed as follows.

Chapter 1: Introduction to TinyML and its Applications – covers the basic
concept of EdgeML and TinyML, their potential applications, and challenges. It
briefly covers the hardware and software platforms required to create TinyML. We
also discuss the process flow of creating TinyML applications.

Chapter 2: Crash Course on Python and TensorFlow Basics – covers the basics
of Python which is now the de facto programming language in machine learning
for both research and creating production ready software. We start with the basic
concepts of Python along with various libraries such as NymPy, Matplotlib. The
later part of the chapter covers the key aspects of TensorFlow. TensorFlow is a free

viii

and open-source software library for machine learning and neural networks. The
chapter briefly covers some of the fundamental concepts of TensorFlow through
coding examples.

Chapter 3: Gearing with Deep Learning – briefly talks about neural networks.
We begin with the concept of a simple Artificial Neural Network (ANN), various
activation functions, and backpropagation to learn the weights. Later, we talk
about Convolutional Neural Network (CNN), a popular deep neural network
architecture used in modern image processing and computer vision applications.

Chapter 4: Experiencing TensorFlow – guides us to develop our first neural
network using TensorFlow and Keras. Keras is a set of deep learning APIs in
Python, running on top of TensorFlow, providing high level of abstraction in
developing large neural networks. We begin with implementing a simple ANN
for classification of handwritten digit images. Later, we implement our first CNN
architecture.

Chapter 5: Model Optimization Using TensorFlow – talks about how a large
TensorFlow model can be effectively compressed in order to deploy on smaller edge
devices using TensorFlow Lite. We create a base CNN model using TensorFlow and
convert it into the lighter TFLite model. The chapter also covers TensorFlow Model
Optimization Toolkit, a software library for optimizing large neural networks for
easy deployment and execution. We learn about different model optimization
techniques, such as quantization, weight pruning and weight clustering through
coding examples using the APIs provided by TensorFlow Model Optimization
Toolkit. Finally, we summarize the impact of various optimization techniques on
the base CNN in terms of model size and accuracy.

Chapter 6: Deploying My First TinyML Application – guides us to create the first
real TinyML application on Raspberry Pi, a commercially available low-powered
edge device. We create a neural network for classification of offline images on
Raspberry Pi. The chapter covers two important topics, MobileNet and transfer
learning. MobileNet is an optimized neural network architecture specially designed
for low-powered mobile edge devices. Transfer learning is another interesting
concept in machine learning, where we can reuse a pre-trained model on a new

 ix

problem. Transfer learning is particularly useful when we do not have sufficient
training data to create a model from scratch.

Chapter 7: Deep Dive into Application Deployment – guides us to implement
a more practical TinyML application of real-time on-device person identification
from live video stream recorded by a camera. The application is again deployed on
Raspberry Pi using various open-source software.

Chapter 8: TensorFlow Lite for Microcontrollers – covers the basics of TensorFlow
Lite for Microcontrollers, a highly optimized software tool for porting TensorFlow
models on low-powered microcontrollers. We implement a simple neural network
that modulates the voltage output of a linear potentiometer and successfully
deploy it on Arduino Nano 33 BLE Sense, the recommended microcontroller board
for creating TinyML applications.

Chapter 9: Keyword Spotting on Microcontrollers – guides us implementing
an on-device speech recognition application. Keyword spotting is an important
requirement in modern voice assistant services, such as Amazon’s Alexa or Apple’s
Siri. In this chapter, we implement a simple keyword spotting application on
Arduino. We first implement a basic keyword detection system using TensorFlow
to understand the key concepts of audio processing. Later, we implement a real
keyword spotting application using Edge Impulse, a free software platform for
designing end-to-end TinyML application and deploy on an Arduino device with
minimum code writing.

Chapter 10: Conclusion and Further Reading – summarizes our learnings in the
book and covers some recent trends in TinyML.

x

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/q35pmfm

The code bundle for the book is also hosted on GitHub at https://github.com/
bpbpublications/Hands-on-TinyML. In case there’s an update to the code, it will
be updated on the existing GitHub repository.
We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

 xi

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xii

Table of Contents

 1. Introduction to TinyML and its Applications ... 1
Introduction .. 1
Structure .. 3
Objectives .. 3
Brief overview of Machine Learning ... 4

Supervised Machine Learning ..5
Unsupervised Machine Learning ..6

Machine Learning and Deep Learning ... 6
Edge computing and TinyML ... 7
Applications of TinyML .. 9
Hardware for deploying TinyML ... 10
Software for TinyML .. 13
Process flow of creating TinyML applications .. 13
Prerequisites—hardware and software .. 16
Conclusion .. 17
Key facts... 17

 2. Crash Course on Python and TensorFlow Basics ...19
Introduction .. 19
Structure .. 21
Objectives .. 21
Colab Notebook ... 22
Python variables ... 24

Python strings ..25
Lists ..26
Tuple ..27
Dictionary..28

Conditional and logical operations.. 28
Loops in Python ... 30
Functions in Python .. 30
Python libraries .. 32

 xiii

NumPy library ...32
Random number generation ..37

Matplotlib library ..39
Pandas library ...41

Introduction to TensorFlow .. 42
Tensors and datatypes ...44
Differentiation in TensorFlow ...46
Graphs and functions in TensorFlow ...47
End-to-end Machine Learning algorithm using TensorFlow48

Conclusion .. 54
Key facts... 55
Further reading ... 55

 3. Gearing with Deep Learning ..57
Introduction .. 57
Structure .. 58
Objectives .. 59
Theory of artificial neural networks .. 59

Binary cross entropy loss function ..62
Neural network activation functions ..63

Sigmoid activation function ..64
Tanh activation function ...65
ReLU activation function ...65
Softmax function ..66

Learning the neural network weights—the backpropagation algorithm66
Introduction to Convolutional Neural Network .. 69

Architecture of a CNN ..71
Input layer ..71
Convolutional layer ..71
Pooling layer ...78
Fully connected layer or dense layer ..79
Output layer ...79

Putting them all together ..79
Neural network hyperparameters .. 80

Number of layers ...81

xiv

Learning rate ...81
Dropout ...81
Regularization ...82
Choice of optimization algorithm ...82
Mini-batch size ..82

Conclusion .. 83
Key facts... 83
Further reading ... 84

 4. Experiencing TensorFlow ...85
Introduction .. 85
Structure .. 86
Objectives .. 86
Keras and TensorFlow ... 87
Classification of handwritten digits using a feedforward neural network 90

Data processing ...92
Model implementation ..94

Implementation of a Convolutional Neural Network 97
Evaluation metrics in classification models ..105
Conclusion ..107
Key facts...108

 5. Model Optimization Using TensorFlow ...109
Introduction ..109
Structure ..110
Objectives ..111
Experiencing TensorFlow Lite ..111
TensorFlow Model Optimization Toolkit ...120

Quantization ...121
Weight pruning ..128
Weight clustering ...134

Collaborative optimization ...138
Conclusion ..143
Key facts...144

 xv

 6. Deploying My First TinyML Application ...145
Introduction ..145
Structure ..146
Objectives ..147
The MobileNet architecture ..147

Depthwise separable convolution ...148
Image classification using MobileNet ..148

Brief introduction to transfer learning ...152
Implementing MobileNet using transfer learning ..153
Creating an optimized model for a smaller target device154
Evaluation of the model on the test set ...157

Introduction to Raspberry Pi..158
Getting started with the Pi ..160

Installing the operating system ..161
Setting up the Pi ..162
Remotely accessing the Pi ..164

Deploying the model on Raspberry Pi to make inference165
Conclusion ..173
Key facts...173

 7. Deep Dive into Application Deployment ...175
Introduction ..175
Structure ..177
Objectives ..177
System requirement ...178
The face recognition pipeline..179
Setting up the Raspberry Pi for face recognition ...180

The Raspberry Pi camera module...180
Installing the necessary libraries ...184

Implementation of the project ..185
Data collection for training ...185
Model training ...189
Real-time face recognition ..192

xvi

Conclusion ..196
Key facts...197

 8. TensorFlow Lite for Microcontrollers ..199
Introduction ..199
Structure ..201
Objectives ..202
Arduino Nano 33 BLE Sense ..202

Setting up the Arduino Nano ..204
First TinyML project on the microcontroller—modulating the potentiometer
209

Required components ..210
Connecting the circuit ...211
Read potentiometer to control the brightness of the LED212
Creating a TensorFlow model to modulate the potentiometer reading215
Inference on Arduino Nano using TensorFlow Lite for Microcontrollers222

Conclusion ..228
Key facts...229

 9. Keyword Spotting on Microcontrollers ..231
Introduction ..231
Structure ..233
Objectives ..233
Working principles of a voice assistant ...234
Implementation of a keyword spotting algorithm in Python235

Audio spectrogram ..241
Designing a Convolutional Neural Network model for keyword spotting ..247

Introduction to Edge Impulse ..251
Implementing keyword spotting in Edge Impulse ...253
Model deployment ...264
Conclusion ..266
Key facts...267

 xvii

10. Conclusion and Further Reading ...269
Introduction ..269
Structure ..270
Objectives ..270
Brief learning summary...271
TinyML best practices ...273
AutoML and TinyML ..275
Edge ML on smartphones ...277
Future of TinyML ...277
Further reading ...278

Appendix ...281

Index ..283

Introduction
The year 2022 brought Artificial Intelligence (AI) to a new level of endless
possibilities through the applications of a Generative Pre-training Transformer,
ChatGPT. ChatGPT is an AI language model that uses advanced machine learning
models to generate human-like text. Needless to say that AI and Machine Learning
are hot topics in modern technology. We are living in a world where we are using
them everywhere in our day-to-day activities, knowingly or unknowingly. Although
the two terms, AI and Machine Learning, are often used synonymously, there are
subtle differences between them.

Artificial Intelligence is the science of imbibing human-like intelligence in machines
via computer programming to make them behave like humans and, therefore, solve
real human problems. In short, through AI, a computer system tries to simulate
human reasoning using maths and logic. AI can be applied to many different sectors
and industries, including but not limited to healthcare industries for suggesting
drug dosage, banking and finance sector for identifying suspicious activities, self-
driving cars, and so on. Machine Learning is a subset of AI, where a machine is
programmed to learn from past experience in order to predict the outcome of a
future event without explicitly being programmed for that. The concept is analogous

Chapter 1
Introduction to
TinyML and its

Applications

2 Hands-on TinyML

to the way we all learn. We gather knowledge from various mediums, for example,
reading books, guidance and advice from parents and teachers, and from our day-
to-day experiences. Based on that knowledge, we can act in a new situation, like
writing in an exam. Machine Learning has many sub-fields. Deep learning is a
subset of machine learning that simulates the behavior of the human brain through
a specially designed architecture called the Artificial Neural Network (ANN). Deep
learning can deal with large unstructured data with minimum human interaction,
and hence, has gained lots of attention in recent times. In today’s world, we are
immensely dependent on Machine Learning and deep learning techniques in our
daily activities. Our smartphones are loaded with numerous applications directly
using machine learning. When you click a photo on your smartphone and upload
it on social media, it automatically detects various objects in the photo, the place
where it is captured, and even suggests you to tag your friends who are present in
the photo. All these happen thanks to some Machine Learning applications such
as object detection, geo-locating mapping, and face recognition. Similarly, while
searching for news on the internet, we often opt for searching by voice. It falls under
speech recognition, another popular application of Machine Learning. When you
shop at an e-commerce site, you are often surprised at how the website accurately
knows your preference and recommends you accordingly. This also happens because
of some Machine Learning algorithms that learn from your past purchase history
and recommend you accordingly.

Machine Learning, particularly deep learning algorithms, are computationally
expensive and often require a powerful hardware accelerator like a Graphics
Processing Unit (GPU) to operate. Such applications typically run on large
computers and dedicated data centers. However, the data is generated by the users,
on their personal devices like smartphones. In the traditional approach, user data is
sent to a dedicated remote server machine via the internet for running the machine
learning jobs. However, is this practically feasible? We generate gigabytes of data
every day. Is it practically possible to send all these data to a remote system? That
would consume enormous network bandwidth. What about the network delay?
Recently, there has been a trend called Edge ML that aims at shrinking the machine
learning models to run them on edge devices like our smartphones.

In this book, we are going to introduce TinyML, which takes Edge ML one step further
and allows it to run machine learning algorithms even on the smallest microcontrollers.
It is a subset of applied machine learning that fits large machine-learning and deep
learning models to tiny embedded systems running on microcontrollers or other
ultra-low power processors. Technically, embedded systems need to be powered by
less than 1 milliwatt so that they can run for months, or even years, without needing

Introduction to TinyML and its Applications 3

to replace batteries. TinyML is one of the hottest trends in the field of embedded
computing. Research suggests that global shipments of TinyML devices will reach 2.5
billion by 2030. Several tech-giants are currently working on chips and frameworks
that can be used to build more systematized devices in order to standardize the field.
TinyML is expected to cause ground-breaking advancements in complex machine
learning tasks to solve our day-to-day problems.

Structure
In this chapter, we will discuss the following topics:

• Brief overview of Machine Learning
 o Supervised Machine Learning
 o Unsupervised Machine Learning
• Machine Learning and Deep Learning
• Edge computing and TinyML
• Applications of TinyML
• Hardware for deploying TinyML
• Software for TinyML
• Process flow of creating TinyML applications
• Prerequisites—hardware and software

Objectives
TinyML is a subfield of modern Machine Learning that aims at compressing large
Machine Learning models to deploy them on low-powered, low footprint, resource-
constrained edge devices and microcontrollers. Though it sounds amazing,
deploying a large Machine Learning model on a smaller edge device is not easy.
A reduction in model size often comes with a degradation in performance. Hence,
rather than compression, the main focus is on optimizing a model for a target device.

This book is intended to cover the fundamentals of TinyML through practical projects
so that the readers can have an in-depth idea of how TinyML works with some
hands-on experience. The primary objective of this book is to make you familiar
with TinyML programming using open-source software packages so that you can
create your own TinyML projects from scratch. Rather than detailing the underlying
complex mathematics involved in machine learning and deep neural network
algorithms, our key focus is to learn the programming aspects using practical

4 Hands-on TinyML

examples. However, interested readers are encouraged to learn the mathematical
aspects from various available resources for a better understanding of how various
machine learning algorithms were actually derived.

In this introductory chapter, we will briefly cover the fundamentals of TinyML. We
will begin with the key aspects of machine learning and deep learning. Then, we
will talk more about TinyML as a technology, its applications, and the hardware and
software recommended to create real TinyML projects.

Brief overview of Machine Learning
Before starting with TinyML, we should have some fundamental concepts of
machine learning. Machine Learning is a branch of artificial intelligence that focuses
on developing computer algorithms based on data to imitate the human learning
process. Now, the question arises: where do we need machine learning?

Suppose you have measured the temperature of the day as 25 degrees in the Celsius
scale using a thermometer and wish to convert it to the Fahrenheit scale. There is
a well-known formula for doing the conversion, which is given by: . You

can simply put C = 25 in the equation and get F as 77. Here, you have both the
data and the rule that relates to the data. However, the situation is quite different
in real-life applications where you have data, but you often do not have a known
mathematical formula to relate them. For example, suppose you want to predict
the price of a house in a suburban locality in Delhi. What would you typically do?
There is no known mathematical formula to solve the problem. Machine learning
can help us to do so. Machine learning is all about data. If we have the right amount
of data, it can help us to find suitable relations between them. In order to predict
the price of a new house, you first need to gather certain information for a few
other houses in the same locality to empirically estimate the price of a new house.
For example, you could collect the area of those houses, the number of rooms, the
distance of the properties from the main road, and so on. You also need to collect
the current prices of those houses. Here, the price of the house can be considered
as a dependent variable, which is determined by the independent variables such
as the area of the house, number of rooms, distance from the main road, and so on.
The dependent variables are also called the target values or labels in some cases,
and the independent variables are called as features. With machine learning, we can
build a model to find the relationship between the dependent and the independent
variables. The resulting model can predict the price of another house if the features
are provided as input.

Introduction to TinyML and its Applications 5

Similarly, suppose a pharmaceutical company is planning to launch a new blood
pressure-controlling medicine. Before that, they want to investigate the impact of
that medicine on people. If the recorded stable blood pressures after the intake of
certain dosages of the medicine are experimentally noted on a diverse group of
people, a machine learning model can be created to predict what should be the ideal
medicine dose for a patient having a certain range of blood pressure.

Machine learning approaches primarily fall into two categories, supervised and
unsupervised machine learning.

Supervised Machine Learning
Supervised machine learning approaches take both features and corresponding
targets or labels as input to create a model which can be used to predict the target
value of a new unseen example data using the features. Supervised machine learning
algorithms are commonly used for classification and regression. In classification, a
machine learning model is designed to predict a discrete class label from the features,
for example, predicting the presence of a cat or a dog in an image, or identifying
numerical digits from handwritten expressions. In regression, a machine learning
model predicts a continuous value, for example, predicting the price of an asset or
predicting the salary of a person. Figure 1.1 provides a basic block diagram showing
various components of the supervised learning approach:

Figure 1.1: Block diagram of supervised learning approach

6 Hands-on TinyML

Supervised learning involves two phases, training and evaluation. During training,
it takes labeled training data as input and tries to create a mathematical relationship
between them by adjusting some parameters, which are called the model weights.
Once the training is done, the model can be used for the prediction of unseen test
data. Feature extraction is a very important step in machine learning. The relevant
set of information extracted from the input that directly determines the target values
is called as features. In the previous example of house pricing, the number of rooms
or area of the house can be considered as features. Similarly, for a classification
problem, if you are given labeled images of cats and dogs as input, color of the
animal in the image, its facial structure, the presence or absence of whiskers, and so
on could be the relevant feature to create the classifier.

Training of a supervised learning algorithm has the following three basic components:
• A decision process that makes a guess of the target values from the input

features.
• An error function that finds how good the guess is with respect to the actual

target values or labels.
• An optimization process that iteratively adjusts the decision process via

modifying the model weights to reduce the error between the guessed and
the actual target values.

Linear regression, logistic regression, support vector machine, and Artificial Neural
Networks (ANN) are popular examples of supervised learning algorithms.

Unsupervised Machine Learning
Unsupervised machine learning algorithms deal with unlabeled data. That means
you only have the features but not the labels. Such algorithms try to find the hidden
patterns of the input data based on the features and group them together to form
clusters. All data in a particular cluster share similar properties. Unsupervised
learning is typically used in applications such as customer segmentation, similarity
detection, product recommendation, data dimensionality reduction, and so on,
where you really do not know the target labels. A few examples of unsupervised
learning algorithms are principal component analysis and K-means clustering.

Machine Learning and Deep Learning
Deep learning is the newest yet most popular branch of machine learning that works
particularly well on unstructured data. Deep learning algorithms can be considered
as mathematical evolution of traditional Machine Learning algorithms. Refer to the

Introduction to TinyML and its Applications 7

basic block diagram of supervised learning in figure 1.1. A machine learning algorithm
cannot learn from raw unstructured data. It first needs to extract a set of relevant
features, and the features are then used to train the model. Feature extraction is a
manual process in traditional machine learning. Finding the optimum feature set is
probably one of the most difficult tasks, which might require domain expertise in
the field application. Deep learning algorithms can directly take raw data as input
and can extract the relevant features automatically, therefore, bypassing the need
for manual feature extraction. Deep learning techniques are particularly useful to
process unstructured data (for example, text and images).

Deep learning approaches analyze data in a way similar to the human brain. They
have a layered structure of Artificial Neural Network (ANN), which is inspired by
the biological nervous system. An ANN comprises of neurons or nodes in a layered
structure where each layer is connected to another layer to analyze complex patterns
and relationships in data. A typical neural network requires huge training data but
minimum human intervention to function. The ability of deep learning algorithms
to work with minimum human intervention makes them extremely popular in
modern data science in diverse practical applications such as computer vision,
speech recognition, natural language processing, and so on. In this book, we will
heavily use deep neural networks in various projects, primarily the Convolutional
Neural Network (CNN).

Edge computing and TinyML
Machine learning, more specifically deep learning algorithms, are computationally
expensive. In reality, it may take from several hours to several days to train a large
neural network model using sophisticated hardware acceleration platforms such as
Graphics Processing Unit (GPU) or Tensor Processing Unit (TPU). Such hardware
platforms are maintained by large enterprises at large distributed data centers. As
individual users, we generate data at our end in our personal edge devices, like
smartphones or tablets, in the form of text, audio, video, or image. However, the
devices we possess are not always capable of running complex machine learning
models for an application. Machine Learning operations are traditionally performed
on the cloud. Users’ data is typically sent to the backend data center that hosts the
machine learning model via the internet for processing, and the result is transferred
back to our device. For effective data management and processing, all our devices
are connected to the internet to create an ecosystem called the Internet of Things
(IoT). The interconnection between traditional machine learning and IoT is no doubt
effective as we get all our jobs done seamlessly. However, it has its own drawbacks.
A few key challenges are listed as follows:

8 Hands-on TinyML

• Data privacy and security: In traditional machine learning, IoT devices send
their data to a cloud network for processing. This is prone to cyber-attacks,
and hence, has severe security and privacy issues.

• Power consumption: Machine learning models consume enormous power. A
research team at the University of Massachusetts estimated in 2019 that deep
learning sessions of a machine learning model could generate up to 626,155
pounds of CO2 emission, which is roughly equal to the carbon emission of
five cars over their lifetime.

• Network bandwidth and latency: It would require an infinite bandwidth
to support hundreds and thousands of IoT devices, to continuously stream
their data to the cloud for processing. Another key aspect is of network
latency. Latency is termed as the time lag in sending and receiving the data
between an IoT device and the server over the network. In slower networks,
the latency is higher, and the user often needs to wait for a long period of
time to get a response from the server. It is undesirable for user engagement
in real-time applications.

Edge AI and Edge ML have emerged as the next frontier of development for IoT
systems. In Edge AI, data is produced, handled, and processed locally. Instead of
sending to the cloud, the analytics happens in the edge device, such as smartphones,
single board computers, IoT devices, or edge servers. Real-time processing allows a
faster response and reduced latency and bandwidth use. Applications of Edge AI can
be seen in object detection, speech recognition, fingerprint detection, autonomous
driving, and so on.

Tiny machine learning, commonly known as TinyML, takes Edge AI one step further
in order to run machine learning algorithms even on the smallest microcontrollers
with the least amount of power possible. TinyML is a rapidly growing field in
machine learning. Instead of GPUs or microprocessors for computation, TinyML
entirely relies on less capable processing units that consume very less power,
typically in the range of a few milliwatts. Such processors are frequently Cortex-M
based, having only a few hundred kilobytes of Random Access Memory (RAM), a
few megabytes of flash memory, and clock rates in the tens of megahertz. Therefore,
TinyML applications ensure low power consumption, low latency in running a
machine learning model. They also ensure to preserve user privacy as the data is
entirely being processed on the edge device.

Introduction to TinyML and its Applications 9

Applications of TinyML
TinyML applications are extremely energy efficient. A standard Central Processing
Unit (CPU) consumes around 70–85 Watts, and a GPU consumes up to 500 Watts of
power to operate. On the other hand, TinyML models operate on microcontrollers
that consume only a few milliwatts or microwatts. Such devices are intended to run
for several weeks or even months without recharging or changing of the batteries.
This brings down the overall carbon footprint. Processing at the edge also ensures
low latency and improved data privacy. These devices are relatively basic in terms
of computation hardware, making them available at a cheaper price. TinyML is
successfully applied in various practical applications across industries, explained
as follows:

• Predictive maintenance: Large industrial machines are prone to making
faults. Predicting a fault of a machine ahead of time is important in any
industry to avoid a potential shutdown. Under normal health conditions,
most machines exhibit some standard properties in terms of mechanical
noise, vibration, torque, and so on. A deviation from the normal range can be
an alarm for the potential fault of the machine in the near future. Continuous
monitoring of the machine is possible by gathering relevant information
on various properties by installing sensors on the body of the machine for
analysis. Such analysis is typically done 24 × 7 using small microcontrollers
with minimum power consumption, as the frequent replacement of the
device battery is impractical.

• Healthcare: TinyML is bringing in affordable solutions in early disease
screening and medical diagnostics, which can be used in developing nations
to supplement limited healthcare facilities. Off-the-shelf electronic devices
in the form of wristbands or smart watches are readily available that use
TinyML algorithms to measure physiological parameters like heart rate and
blood pressure. Such devices can also predict abnormal heart rhythms like
atrial fibrillation, which can be an early sign of a heart attack.

• Agriculture: There are mobile phone applications for assisting farmers to
detect diseases in plants just by taking a few pictures of the diseased plants to
run on-device machine learning algorithms for analysis. As the applications
do not need images to send to the cloud, they can help the farmers in remote
areas where stable internet connectivity remains an issue.

• Voice-assisted devices: Voice-assisted devices such as Amazon Echo, Google
Home, or iPhone’s Siri have become very popular these days. Such devices
listen to your voice command and can act accordingly, such as playing
your favorite music, turning ON/OFF the room light, and so on. This is a

10 Hands-on TinyML

perfect example of where TinyML and traditional machine learning work
together. The microphone of the voice-assisted device continuously analyses
the background sound to detect a wake-up keyword such as “OK Google!”,
“Alexa!”, or “Hey Siri!”. The keyword detection process has to be extremely
light-weight, on-device, and low-powered. This is where TinyML is deployed.
As soon as the keyword is detected, the device wakes up and records your
following voice instruction like “What’s the weather going to be like today?” or
“Play my favorite music.”, which is sent to the cloud for processing via more
powerful natural language processing algorithms which are not possible to
run at the edge.

• Ocean life conservation: TinyML applications are used for real-time
monitoring of whales in North America to avoid whale strikes in busy
shipping lanes.

Hardware for deploying TinyML
A complex deep learning model can have several thousand to millions of trainable
parameters, resulting in a large model size in the range of several megabytes to
gigabytes. In general, model size is not a big issue when machine learning applications
are deployed on a remote server that virtually has infinite memory space for storage.
However, the scenario is different in TinyML, having a few hundred kilobytes of
RAM.

Deciding the correct hardware for deploying TinyML models is often challenging.
You have to keep several factors in mind, for example, the device form factor for
your application, how much memory storage your model requires, the maximum
allowable power consumption by your application, what sensors you might require
for the collection of data and their interfaces, whether you require on-device
training, the approximate price of your application, and so on. Our smartphones
and tablets are great examples of edge devices. The past few years have witnessed
a rapid proliferation of smartphones. Modern smartphones are rich in computing
resources and in-built sensors. You can even train medium size neural networks on
them. Smartphones and tablets are a great choice to run Edge ML applications that
involve a strong user interface, for example, on-device face recognition for person
identification, high-definition videography, gaming, natural language processing,
and so on.

A Single Board Computer (SBC) is another popular device for edge computing
in IoT-based applications. An SBC is a small portable computing device built on a
single printed circuit board with a microprocessor, memory, and input/output (I/O)
devices. Although an SBC has much smaller memory and lesser powerful processor

Introduction to TinyML and its Applications 11

than a personal computer, it comes at a much cheaper price and drives significantly
low power to operate. An SBC can draw its required power to operate from a power
bank or the USB port of a computer. SBCs can easily interface with external sensors
like servo motors and ultrasound sensors. They are typically used in academic
projects and industrial applications where edge devices of small form factors are
required to be directly connected to external devices for data collection and analysis.
Figure 1.2 shows a picture of a Raspberry Pi device, a popular SBC used in various
commercial applications and academic projects. The device is powerful enough to
run optimized deep learning models.

Figure 1.2: Raspberry Pi 3, Model B+, a popular single board computer

When we think of deploying extremely low-profile TinyML applications to operate
24 × 7, the primary target hardware are the microcontrollers. A microcontroller is a
compact Integrated Circuit (IC) designed to perform a specific task in an embedded
platform. They are much smaller in size than a smartphone or an SBC and have
much lesser computing resources. However, they are extremely low-powered. A
microcontroller primarily contains a CPU that connects all other components in
a single system. The CPU fetches data, decodes, and executes the assigned task.
The CPU clock speed typically ranges between 16 megahertz and 64 megahertz in
a microcontroller. They have a small amount of computation memory along with
a certain amount of Read Only Memory (ROM) or flash memory for the storage
of data and programs. The typical RAM size is 64 to 256 kilobytes, and the flash
memory can be of 2 megabytes. There are several I/O ports to communicate with
external devices. Microcontrollers may also contain one or more in-built timers and
counters, Analog to Digital Converter (ADC) and Digital to Analog Converter
(DAC), to read data from external sensors. Microcontrollers can be divided
into various categories depending on the underlying architecture, memory, and
instruction sets. They are used in applications such as machine health monitoring,
space research, autonomous cars, and so on, which need to operate for a prolonged
duration without frequently replacing the battery.

12 Hands-on TinyML

Microcontrollers are significantly different than a computer system. A computer
system is designed to perform multiple different tasks concurrently, whereas a
microcontroller is specifically designed for one particular application, such as
turning ON/OFF an LED, rotating a servo motor, or controlling a robotic arm.
Microcontrollers have a much-constrained hardware environment. The CPU clock
speed of a powerful microcontroller can be up to 64 megahertz, with 256 kilobytes
of RAM and only 1–2 megabytes of flash memory. On the other hand, modern
computer systems come with several gigahertz of CPU clock speed, 8–16 gigabytes
of RAM and terabytes of storage area. Microcontrollers do not have an operating
system. They draw much smaller power compared to a computer, which is in the
range of milliwatts or microwatts. Hence, they can operate for several weeks without
recharging or replacing the battery, making them extremely popular for continuous
operation in edge computing applications. Figure 1.3 shows few of commercially
available microcontroller units popularly used in TinyML applications:

Arduino Nano 33 BLE Sense SparkFun Edge

Raspberry Pi Pico ESP-32-S3
Figure 1.3: Popular microcontrollers for TinyML applications

Introduction to TinyML and its Applications 13

Software for TinyML
Apart from hardware, there are certain software libraries and platforms we
heavily rely on creating TinyML applications, from model optimization to on-
device interferences. The optimization algorithms aim at compressing a base
machine learning model in such a way that ensures a minimum degradation in
performance. TensorFlow is Google’s open-source machine learning framework
for easy development of machine learning models. TensorFlow Lite is a mobile
library for optimizing and deploying large TensorFlow models on mobile devices
running Android or iOS or Linux based embedded devices like Raspberry Pi or
even some microcontrollers. It is a cross-platform that converts a TensorFlow model
in to a special format called flatbuffer that can be optimized for speed or storage.
For microcontrollers, there is another version of TensorFlow, TensorFlow Lite for
Microcontrollers. It is written in C++ 11 and requires a 32-bit platform, which is
mostly compatible with ARM Cortex-M Series processors used in microcontrollers.
There also exists software platforms like Edge Impulse or Neuton for creating highly
optimized end-to-end TinyML applications from scratch without writing a single
line of code.

Process flow of creating TinyML
applications
Depending upon the nature of the application, the target hardware for TinyML
can be a smartphone, an SBC or even a smaller microcontroller unit. A complex
machine learning or a deep learning model may not exhibit the desired performance
on an edge device. For example, a deep neural network for image classification can
have several thousands of parameters resulting in a large model of few megabytes.
A standard microcontroller contains only few hundred kilobytes of RAM. Such a
microcontroller cannot even load the machine learning model in its memory. While
executing a machine learning application, the training model should not occupy
the entire memory space. There has to be enough memory space available for the
input data, storing the intermediate variables also for the output. Hence, a standard
machine learning model needs to be compressed and optimized in order to effectively
run on an edge device.
In machine learning, training of the model is the most computationally expensive
and time-consuming job. In general, model training is not preferred at the edge.
Instead, it is commonly done on a powerful computer or server having sufficient
computational power. The edge devices are primarily intended to make inferences
on test data. Figure 1.4 depicts the block diagram of the different steps involved in
developing a TinyML application.

14 Hands-on TinyML

Figure 1.4: Block diagram indicating different steps of creating a TinyML application

• Data acquisition: Getting the right data is the key to training any machine
learning model. There is no exception in TinyML. The accuracy of a
machine learning algorithm heavily depends on the diversity of the dataset
upon which the model has been trained. A machine learning model is
not guaranteed to work on test data that is statistically different than the
training data. Suppose you want to create a TinyML application that will
be deployed on a Raspberry Pi for the classification of images captured by
a USB camera. Suppose all your images in the training data were recorded
using a high-quality DSLR camera. Despite reporting very good accuracy
in internal validation on the training data, your model may not work in
the target platform. The quality of images captured by the USB camera
during evaluation is of much inferior quality compared to a DSLR camera
used to collect the training data. In order to get the optimum performance,
your training data should contain images recorded by all possible types of
cameras that would be used in the deployment setup. Similarly, if you want
to design a speech recognition system and you train your model on voice
samples recorded from young male people, your model will most probably
fail on female voice or even on the voice of elderly men.

• Model creation: Once a good amount of training data is acquired, we are good
to go for training the model. Machine learning engineers often opt for a trial-
and-error method for finding the optimum machine learning architecture.
The entire dataset is split into three parts, training, validation, and test sets.
The model is first created on the training set and is internally evaluated on

Introduction to TinyML and its Applications 15

the validation set. The performance on the validation set is used as feedback
to tune the model architecture. A model performing very well on the training
set, but doing unsatisfactory on the validation set is an undesirable condition
which called an overfit. Similarly, a model which does not perform on both
training and validation set is called an underfit. A perfectly trained model
should produce similar performance on both training and test sets. Once you
are satisfied with the performance on the validating set you can finalize the
model and evaluate on the test set and then release the model for deployment.

 Throughout this book, we will use TensorFlow for developing our machine
learning models in Python programming language. TensorFlow contains
various libraries and Application Programming Interfaces (APIs) for the
quick and easy creation of complex neural networks from scratch. One can
even use a pre-trained neural network architecture and retrain it on his/her
own data using transfer learning.

• Model optimization and conversion for edge devices: We cannot readily
deploy a machine learning model to make inferences. The model needs to be
optimized for the target devices. In model optimization, our key objective is
to convert the original model to a smaller and faster model with a minimum
impact on overall performance. Model optimization can be achieved in
various ways, such as quantization, weight pruning, and weight clustering.

 In quantization, the model activations and model weights are converted
from 32-bit floating points to 16-bit floating points or even 8-bit integers,
which results in a smaller model. The integer-based models execute much
faster. In a large neural network, a significant number of parameters have
very little impact on overall performance. We use weight-pruning to remove
a few such insignificant parameters from the network. Although there is a
negative impact on model performance due to pruning, it introduces model
sparsity which helps to compress the model. Similarly, in weight-clustering,
the number of unique weights in the model is reduced by grouping them
into a given number of different clusters.

 In this book, we will primarily use TensorFlow Lite to run our TinyML
applications on edge devices like smartphones or Raspberry Pi. We will also
use TensorFlow Lite for Microcontrollers to further optimize the models to
deploy on the microcontroller units.

• Model deployment at the edge: Model training and optimization are mostly
done on a resourceful machine having the necessary computation capacity.
The optimized model is then deployed on the target edge device. There are
Software Development Kits (SDK) specific to the target platform used for
model deployment.

16 Hands-on TinyML

• Make inference: Once the model is successfully deployed, we are ready to
go for on-device inference. Both TensorFlow Lite and TensorFlow Lite for
Microcontrollers provide optimized APIs to make inferences on diverse
mobile edge devices and microcontrollers.

Prerequisites—hardware and software
The readers do not necessarily require an in depth knowledge of machine learning to
follow this book. However, we assume the readers have a strong mathematical base
in terms of linear algebra and probability theory. We also assume that the readers
have some fundamental programming knowledge in Python and C/C++. Although
we will briefly cover some of the commonly used Python libraries in Chapter 2,
Crash Course on Python and TensorFlow Basics, it might be difficult for beginners to
totally understand the concept. Interested readers are, thus, encouraged to check the
abundantly available resources on Python in printed or electronic mediums to get
familiar with the programming concept at their own pace.

Throughout this book, we will use Google Colab for designing and optimization
the machine learning models in Python programming language. Colab is a free
Python editor where one can write and execute Python scripts on cloud. As a result,
the readers do not require to install any environment at their end to run Python
scripts but can use the power of GPU and TPU over the cloud for faster training of
deep learning models. We will primarily use TensrorFlow and TensorFlow Lite to
implement various projects.

Two different edge devices will be used for implementation. The first two projects
will be implemented on Raspberry Pi 3, model B+, and the remaining two on
Arduino Nano 33 BLE Sense. Both are commercially available low-cost edge
devices for TinyML applications. Raspberry Pi is a Linux based SBC popularly
used in various academic projects for edge computing. It has enough computing
resources to run optimized deep learning models. It can easily communicate with
external sensors, I/O devices and camera for data collection and user interaction.
One can even execute Python scripts on the device including TensorFlow Lite. On
the other hand, Arduino Nano 33 BLE Sense is a microcontroller-based embedded
hardware platform which is considered as the suggested development board for
deploying TinyML applications. It comes with a host of inbuilt sensors, including
a microphone, nine-axis accelerometer, gyroscope magnetometer, and temperature
sensors so that it can be directly used in a number of practical projects without
connecting to external sensors. Arduino has its own human readable language to
program. The language is very similar to C/C++ with some special features and
methods specific to the hardware. One having some fundamental knowledge in

Introduction to TinyML and its Applications 17

C/C++ can very easily write codes for Arduino. Arduino IDE, a freely available
software is used for writing the programs, code compiling and deployment. With
TensorFlow Lite, one can convert a base TensorFlow model into an equivalent C++
library for Arduino as well as use the other optimized libraries to write on-device
inference programs.

Conclusion
We have come to the end of the first chapter of this book. TinyML is an emerging
field of advanced machine learning. In this chapter, we have briefly introduced
the concept of TinyML along with its potential applications and various hardware
platforms for implementation. TinyML aims at compressing and optimizing large
machine learning and deep learning models to effectively run them on low-powered
edge devices like mobile edge devices or microcontrollers. TinyML is a new
paradigm in machine learning which ensures that the analysis is done on the device
itself, where the data has been recorded. By doing this, not only consumes lesser
network bandwidth but also preserves user privacy as the data recorded by the edge
device is not sent to the cloud for processing. Although we are still in a nascent stage,
TinyML has a lot of promise to enable AI research from a new perspective, which
can revolutionize the industry. In the upcoming chapter, we will start learning the
programming aspect to implement our own TinyML applications.

Key facts
• TinyML is a branch of machine learning that aims at designing extremely

optimized machine learning algorithms for small-edge devices and
microcontrollers.

• These applications are extremely low-powered, highly portable, and cost-
effective.

• TinyML is commonly used in real-time applications that involve continuous
monitoring. A few examples are the automatic prediction of machine failure,
keyword spotting from human speech, traffic surveillance, and so on.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In the first chapter, we talked about the basics of TinyML, its utility, and potential
applications in various industries as well as our everyday life. TinyML brings the
power of machine learning to small edge devices or microcontrollers that can be
easily deployed in various practical applications at home, office, and in industries
such as retail, agriculture, or healthcare. Compared to traditional machine learning
models, TinyML requires less computation and consumes less energy to operate.
However, you will only be able to appreciate the true power of TinyML when you
will learn how to create your own TinyML application, which can be used in your
daily life.

From this chapter, we will gradually learn how to create a TinyML application from
scratch using various open-source libraries. We will start our journey by creating
a simple deep neural network model on the desktop for image classification and
gradually learn different steps to design an optimized light-weight neural network
that can run on small microcontroller devices. In modern data science, complex
machine learning and deep learning models are commonly implemented in a
scripting language called Python. In this chapter, we will briefly learn the basics of

Chapter 2
Crash Course

on Python and
TensorFlow Basics

20 Hands-on TinyML

the Python programming language. All the machine learning models we are going
to implement in this book will be primarily created in Python. Hence, it is important
to have strong basics in Python for implementing TinyML.

Python is a very popular computer programming language that was created by
Guido van Rossum in the late 1980s. The first version of Python was released in 1991
under the GNU General Public License (GPL). It is a free, high-level, interactive,
and object-oriented programming language. Python is an interpreted programming
language. Python scripts are processed at runtime by the Python interpreter. The
interpreter translates and executes the program one statement at a time. Python
language is heavily used in academics and is also used by all major tech-companies
such as Google, Amazon, Meta, and so on. Unlike C/C++, you do not need to
compile a Python program before executing. You can even directly interact with the
interpreter from a Python prompt to execute your program. Python works on almost
all popular platforms and operating systems, such as Windows, macOS X, Linux, or
even Linux-based edge devices like Raspberry Pi and a few microcontrollers. Python
syntax is simple enough, which makes it highly readable. It supports very high-
level dynamic data types and automatic garbage collection. Furthermore, Python
codes can be easily integrated with other programming languages such as C, C++, or
JAVA. As a result, Python is popularly used for server-side Web scripting, software
development, and mathematics.

Python is perhaps the most globally accepted programming language used in machine
learning. Other popular high-level programming languages include R, JavaScript,
MATLAB, and so on. However, Python is predominantly used in statistics, data-
science, machine learning, and deep learning applications, from rapid prototyping
to production-ready software development. Some of the key advantages of Python
are as follows:

• It can handle big data and perform complex mathematics optimally.
• Python is simple and easy to learn. Hence, it is extremely popular among

researchers and developers.
• Python offers a large number of libraries and frameworks for easy

implementation of complex machine learning algorithms.
• Being platform independent, Python applications can run on multiple

operating systems. Hence, it is convenient to use Python for both development
and deployment.

• Finally, Python has a great user community to disuses your issues.

Crash Course on Python and TensorFlow Basics 21

Throughout this book, we will use Python 3 to develop all our projects, which is the
recent stable version of Python.

Structure
In this chapter, we will discuss the following topics:

• Colab Notebook
• Python variables
• Conditional and logical operations
• Loops in Python
• Functions in Python
• Python libraries
 o NumPy library
 Random number generation
 o MatplotLib library
 o Pandas library
• Introduction to TensorFlow
 o Tensors and datatypes
 o Differentiation in TensorFlow
 o Graphs and functions in TensorFlow
 o End-to-end Machine Learning algorithm using TensorFlow

Objectives
The key objective of this chapter is to briefly cover the fundamental aspects of the
Python programming language and a few of its libraries popularly used in data
science and machine learning applications. Although Python is a vast programming
language having lots of functionalities and external libraries to learn, we will briefly
cover a few of them through simple code examples to get an idea of how to use
them in machine learning. The knowledge learnt in this chapter will be heavily
used in subsequent chapters in implementing the projects. The readers who already
have some fundamental knowledge in Python can skip the first few sections of this
chapter or can quickly go through the code examples to brush up their skills. Later
in this chapter, we will briefly cover the basics of TensorFlow, a software library

22 Hands-on TinyML

popularly used in creating large and deployment-ready machine learning and deep
neural network models.

Colab Notebook
As mentioned earlier, Python is an interpreted programming language. In order
to execute Python, you need to install some software on your computer. The list
of software includes the Python interpreter, various supporting libraries that you
might require in your applications, and optionally an Integrated Development
Environment (IDE), such as Thonny, PyCharm, or Jupyter, for editing or quick
debugging of the programs. A detailed instruction for installing Python distribution
and various libraries on your computer can be found on the official website of
Python1.

In this book, we will use Colab Notebook, a cloud-based environment for Python
programming to implement the projects. Colaboratory, commonly known as Google
Colab or simply Colab, is a Google research project providing a free Web browser-
based Jupyter Notebook environment for writing and executing interactive Python
codes. It requires no software installation or setup at the user’s end, as the code
execution is entirely done in the cloud. Hence, you do not need a high-end computer
to execute large and complex Python codes. The user can use Google Colab virtually
from any device with an internet connectivity to connect to a Python runtime for
code execution. Moreover, you can freely use the power of Graphics Processing
Units (GPU) or Tensor Processing Units (TPU) hosted at Google’s data centers to
speed up the code execution. The notebooks created at Colab are stored in your
Google Drive, which you can easily maintain and also share with others. Most of the
necessary libraries popularly used in developing deep neural network architectures
are preinstalled in Colab, which will give you a seamless programming experience.

The best user experience of Google Colab can be found by using the Google Chrome
Web browser. Google Colab can be accessed simply by typing and hitting the URL
https://colab.research.google.com/. The welcome page of Colab will look similar to
what is shown in figure 2.1:

1 https://www.python.org

Crash Course on Python and TensorFlow Basics 23

Figure 2.1: Google Colab welcome page

You are encouraged to watch the welcome video on the Web page to get a quick
overview of Colab. You need to link your Gmail account with Colab so that your
notebook files are automatically saved in your Google Drive. Let us create a new
notebook from the File tab at the top left side of the browser. Select File → New
notebook.

You will get a new Colab notebook to implement your project, as shown in figure
2.2. It contains a code cell where you write your program and buttons to perform
various operations. You can rename your project by clicking on the filename. The
project can also be saved on your local machine as an .IPYNB file.

Figure 2.2: Sample Colab notebook

Now, perform the following:
1. Once a new project is created, click on the Connect button on the right side of

the notebook. It will allocate you the necessary resource and connect you to
a hosted Python runtime to execute your code in the cloud.

24 Hands-on TinyML

2. You can also connect to a GPU or TPU. Go to Runtime->Change runtime
type. However, GPU resource is only allocated for a given period of time and
is expected to be used only when heavy computation is required.

3. You can write your code inside the code cell of the notebook (Refer figure
2.2). Click the play button at the left to execute your code inside the cell. The
output will be displayed underneath the cell. You can add new code cells by
clicking the +Code button and execute the cells individually.

Now, let us learn some basics of Python programming through practical examples.

Python variables
Understanding the variables and data types is important in learning any
programming language. Python has five standard data types, numbers, string, list,
tuple, and dictionary. Unlike C/C++, Python variables do not require an explicit
declaration to reserve memory space. The equal (=) sign is used to assign values to
variables. Go to your Colab notebook and add a new code cell. Enter the following
code and execute. It will declare and print different variable types in Python. The
code output is shown in figure 2.3:

>>x = 10

 y = 15.8

 z = 'TinyML'

 print('an integer : ', x)

 print('a float : ', y)

 print('a string ', z)

Figure 2.3: Python variable declaration

You can disable a code line from execution by adding the # character in front of
the line. The function print() is used to display the output in the console. Python
supports standard mathematical operations such as addition (+), subtraction (–),
multiplication (*), and so on. See the following code. Add a new code cell and execute
the following lines of code. The output is shown in figure 2.4:

Crash Course on Python and TensorFlow Basics 25

>>a = 10

 b = 20.2

 c = 5

 sum = a+b

 subtract = b-a

 mult = a*c

 print('addition : ', sum)

 print('subtraction : ', subtract)

 print('multiplication : ', mult)

Figure 2.4: Examples of mathematical operations in Python

Python strings
• Python strings are sets of characters represented within quotation (‘ ’) or (“

“) marks.
• The plus (+) operation is used for addition, and the asterisk (*) is for the

repetition of the string.
• The colon (:) operator is used to get the characters within a string in between

any two given indexes. In Python, the first index is represented by zero, and
the final index is indicated by –1.

Refer to the following code for an example showing some basic string operations in
Python. Run it on a new code cell. The code output is shown in figure 2.5:

>>str1 = 'Hello'

 str2 = 'TinyML'

 str3 = str1+str2 # addition of two strings

 str4 = str1*2 # repeats the string

26 Hands-on TinyML

 print(str3)

 print(str4)

 print(str3[0]) # prints the first character of a string

 print(str3[3:6]) # prints fourth to sixth characters of a string

 print(str3[-1:]) # prints the last element of a string

Figure 2.5: Basic string operations in Python

Lists
• Python lists are compound data types comprising multiple items separated

by commas and enclosed within brackets ([]).
• Lists are similar to arrays in C, but they can contain heterogeneous data

types (that is, both numbers and strings).
• Lists are mutable, which means you can change the elements in a list.
• The elements in a list are indexed at 0 at the beginning, and the last element

is annotated by –1. The colon (:) is used to get elements between two certain
indexes within a list.

• The plus (+) operator concatenates two lists one after another (note, the +
operation does not do an element-wise addition). The append() function is
used to add a new element to a list.

See the following code for basic string operations. The code output is shown in figure
2.6:

>>list_1 = [1, 2, 3, 4, 5] # a list of integers

 list_2 = [10, 10.45, 'Tom'] # string of various data types

 list_3 = list_1 + list_2 # add the two lists

 print('list_3 : ',list_3)

 print(list_3[2:5]) # print from third to fifth element of the list

Crash Course on Python and TensorFlow Basics 27

 print(list_3[-3:]) # print the last three elements of the list

 list_3.append(50) # add an element at the end of the list

 print('list_3 ',list_3)

Figure 2.6: Example of Python list

Tuple
Python tuples are also sets of comma-separated values similar to lists but are enclosed
in parentheses (()). Unlike lists, tuples are immutable, and hence, they cannot be
updated. See the following code for understanding the concept of the tuple:

>>tuple_1 = (110, 20, 30, 40, 50) # a tuple of strings

 tuple_2 = (20, 25.4, 'Tom', 'Jerry') # a tuple a of various data types

 tuple_3 = tuple_1 + tuple_2 # add the tuples to a get a new one

 print(tuple_3)

 print(tuple_3[2:6]) # print from third to sixth element

 list_4 = [10, 50, 100, 120] # define a list

 list_4[2] = 70. # modify the third element of the list

 print(list_4)

 tuple_1[2] = 25 # will throw an error as tuple cannot be updated

Refer to the code output in figure 2.7 for understanding the difference between a list
and a tuple. The Syntaxes of various operations on a tuple are quite identical to the
operations on a list. Please note while modification of an element in a list is possible,
it is not supported in a tuple. Hence, we get an error in Line 12 of the preceding
code when we try to modify the elements in a tuple. Since Python is an interpreted

28 Hands-on TinyML

programming language, it executes the program line by line and displays the output
till Line 11 before throwing the error in Line 12.

Figure 2.7: Example of tuple

Dictionary
• Python dictionaries are similar to hash tables where data is stored in key:value

pairs.
• Dictionary items are printed with curly brackets. An item can be referred by

the key names.
• Dictionary items can be modified, added, or removed, but duplicate items

are not allowed.

In the following code snippet, we create a dictionary and show various operations:

>>mydict ={'name': 'John', 'year': 1984, 'skillset' :['C', 'JAVA',
'Python']}

 print(mydict['name'], mydict['skillset']) #print dictionary items

 mydict.update({'year' : 1990}) # update one item

 mydict.update({'company' : 'ABC International'}) # add one item

 mydict.pop('skillset') # remove the item skillset

Conditional and logical operations
Python supports various conditional operations using the if, elif, and else keywords.
Standard and, or logical operators are also supported. Unlike other programming
languages, Python uses indentation to define the scope of the code and does not use

Crash Course on Python and TensorFlow Basics 29

curly brackets ({}). Indentation is maintained by adding some white space before
the code line. You need to be very careful in maintaining the indentation in Python
programming. Failing to maintain the indentation will produce errors. Standard
operations used to compare two variables in conditional operations and their syntax
are as follows:

• a is equal to b : a==b (note, a=b, assigns the value of variable b to variable a)
• a is not equal to b : a!=b
• a is greater than b : a>b, a is greater than or equal to b : a>=b
• a is lesser than b : a<b, a is lesser than or equal to b : a<=b

The following example shows the usage of conditional operations to find the
maximum between two numbers. See the usage of indentation in the code.

>>x = 30

 y = 40

 if x>y:

 print("x is bigger than y")

 elif x==y:

 print("x and y are equal")

 else:

 print("y is greater than x")

The following code example shows how both conditional and logical operations
(and, or) can be used in Python to find the maximum of three different numbers:

>>x = 30

 y = 50

 z = 40

 if x>y and x>z:

 print("x is the maximum")

 elif y>x and y>z:

 print("y is the maximum")

30 Hands-on TinyML

 else:

 print("z is the maximum")

Loops in Python
In a programming language, the loop statements are used to execute a group of
statements multiple times if a condition is met. Python has two popular types of
loops, while loop and for loop. The codes within the loops are indented.

In a while loop, we first set a condition, and the set of instructions are executed in the
loop as long as the condition is true. The following example code uses the while loop
to print the even numbers between 1 and 10:

>>i = 1

 while i<=10:

 if i%2 == 0:

 print(i)

 i = i+1

In for loops, a set of instructions is iteratively executed. Refer to the following code
example that reads all elements in a given list, multiplies each element with 5, and
saves in another list for printing using for a loop.

>>list_a = [4, 7, 9, 11, 15] # input list

 list_b = [] # define an empty list where the multiplied values will
be stored

 for i in list_a: # reads every element in the list on by one

 j = i * 5

 list_b.append(j)

 print(list_b) # print the new list after exiting the for loop

Functions in Python
A function is a reusable code block that is used to perform a single task. It can be
called and reused multiple times inside your program. Python functions behave
similar to other programming languages. The key features are provided as follows:

Crash Course on Python and TensorFlow Basics 31

• In Python, a function is defined using the def keyword, followed by the
function name and the input arguments that are provided within parentheses
and ends with a colon (:).

• The code block within a function is indented.
• A function ends with a return statement that gives the output values. A

function can have single, multiple, or no return values.
• The variables defined within a function block have local scope within that

function only, whereas variables defined outside that function have global
scope.

The following code example shows how to define a function in Python. It performs
addition, subtraction, and multiplication of two numbers by defining a function my_
fun().

>># function definition

 def my_func(num_1, num_2):

 sum = num_1 + num_2

 diff = num_1 - num_2

 mult = num_1 * num_2

 return sum, diff, mult

 # function call

 a, b, c = my_func(25, 15)

 print("The sum = ", a)

 print("The difference = ", b)

 print("The multiplication = ", c)

The code output is shown in figure 2.8:

Figure 2.8: Defining functions in Python

32 Hands-on TinyML

Python libraries
As a programming language, a popular feature of Python is the availability of
various libraries. A library can be defined as a collection of code modules that can
be easily called from our program for specific operations. Python has become one
of the most popular programming languages in data science and machine learning
thanks to its readily available libraries, which help in the quick implementation of
machine learning architectures, data visualization, and report generation without
writing many lines of code.

The core Python distribution comes with a collection of standard libraries of
more than 200 standard modules. The standard libraries contain built-in modules
written in C and provide various capabilities such as interacting with the operating
system (the os module), accessing files input/output (I/O), performing various
mathematical operations (the math module), parsing command line arguments (the
sys module), and so. Apart from that, there are external libraries that need to be
installed separately. In the following sections, we will briefly discuss a few libraries,
which are popularly used in machine learning applications.

NumPy library
NumPy is a popular Python library for working with numerical arrays and is
commonly used in linear algebra and data science. A NumPy array is identical but
faster than a Python list and comes with many more functionalities. The NumPy array
object is called ndarray. An ndarray is a multi-dimensional object of homogeneous
data. The shape of the array is a tuple integers specifying the size of each dimension.
NumPy arrays are highly optimized, and the array elements are stored in continuous
memory locations, ensuring faster access and processing of data compared to lists.

In order to work with a library, one needs to import it into the workspace. In Python,
a library is imported by the import keyword. While importing the NumPy package,
we create an alias np with the keyword as to avoid the repetitive usage of the word
numpy in the program.

NumPy and most of the Python libraries required in machine learning are already
installed in the Colab environment. So, you just need to go to your Colab notebook
and type the following command to import the NumPy library.

>>import numpy as np

In Python, the functions inside a library module are called by using a dot (.) operator
along with the module name. A NumPy array can be created by passing the elements

Crash Course on Python and TensorFlow Basics 33

separated by coma as input arguments to the function array() under the NumPy
module. It will create an ndarray object. Similarly, A Python list or a tuple can also be
converted to a NumPy array using the same function. The following code example
shows how to create a NumPy array and how to convert a Python list and tuple to
a NumPy array.

>>import numpy as np

 arr_1 = np.array([1,2,3,4]) # define an array

 print(arr_1)

 print("type of arr_1 : ", type(arr_1))

 my_list = [10, 20, 30 ,40] # define a list

 arr_2 = np.array(my_list) # convert the list to an array

 print(arr_2)

 my_tuple = (50, 100, 200) # define a tuple

 arr_2 = np.array(my_tuple) #convert the tuple to an array

 print(arr_2)

See the code output in figure 2.9:

Figure 2.9: Creating a NumPy array

The preceding arrays are 1-dimensional. NumPy supports 0, 1, 2, 3 or higher
dimensional arrays. The array dimension can be returned by the ndim attribute.
Refer to the following example to print the dimension of a NumPy array.

>>arr_2d = np.array ([[1,2,3,4], [5,6,7,8]]) # a 2-D array

 arr_3d = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]) # a 3-D
array

34 Hands-on TinyML

 print(arr_2d.ndim)

 print(arr_3d.ndim)

Indexes in a NumPy array start with 0 to access the first item, index 1 to access the
second element, and so on. The last item is indexed as –1. In the previous example,
the third element in the second row in the 2-D array, arr_2d, can be accessed by
arr_2d[1, 2], that is, arr_2d[1, 2] = 7. Similarly, in the 3-D array, arr_3d[1, 0,
2] = 9. The colon operation is used to select all the elements in a row or a column in
an array. For example, arr_2d[:, 2] will print the entire row matrix at the second
column. So, arr_2d[:, 2] = [3, 7]. Similarly, arr_3d[1, 1, :] = [10, 11, 12].

We often need to generate data arrays in our program. The np.arange() function
creates an array of evenly spaced number within a given range. Executing
np.arange(0, 10) will return an array of 10 elements from 0 to 9. By default, the
distance between two elements, that is, the step-size in the array is 1. However,
one can provide the step-size between two elements as the third input argument
in the function. Remember, the end-point of the interval is excluded. Similarly, the
linspace() function returns evenly spaced samples within a given range. There is
a subtle difference between the two functions. The function arange() allows you to
define a step-size and infers the number of steps between the given ranges, whereas
linspace() allows you to define how many values you want within the given
interval.

The following example shows the usage of arange() and linspace().

>>arr1 = np.arange(0,10) #creates an array between 0 and 10

 arr2 = np.arange(10,30,3) #creates an array between 10 and 30 with
step-size 3

 print("arr1 = ",arr1)

 print("arr2 = ",arr2)

 #using linspace

 print(np.linspace(0,20,10)) #creates an array between 0 and 20 in 10
steps

Crash Course on Python and TensorFlow Basics 35

See the code output in figure 2.10:

Figure 2.10: Usage of arange() and linspace()in NumPy:

The functions zeros() and ones() under NumPy create an array of zeros and ones
of a given dimension. They will create one-dimension and multi-dimension arrays
where the inputs are given in the form of a single number or a tuple. Refer to the
following code example, the output of which is shown in figure 2.11:

>>arr_zeros_1d = np.zeros(5)

 arr_zero = np.zeros ((3,3))

 arr_one = np.ones ((4,3))

 print("arr_zeros_1d", arr_zeros_1d) # creates 1-D array of zeros

 print("arr_zero = ", arr_zero) # creates 3X3 array of zeros

 print("arr_one = ", arr_one). # creates 4X3 array of ones

Figure 2.11: NumPy arrays of zeros and ones

NumPy also allows you to rearrange the dimension of an array without changing
the data using the reshape() function. You can also convert a 1-D array into a multi-
dimensional array. See the following example and the corresponding output in figure
2.12:

>>array = np.arange(0,12) # create a 1-D array

 print("original array")

 print(array) #print the original array

36 Hands-on TinyML

 print("2-D converted")

 print(array.reshape((4,3))) # rearrange into a 2-D array of 4 rows and
3 columns

 print("3-D converted")

 print(array.reshape((2,3,2))) #rearrange into a 3-D array

Figure 2.12: Reshaping a NumPy array

NumPy has a wide list of inbuilt functions to perform various mathematical
operations on arrays. Apart from simple mathematical operations such as addition,
subtraction, one can perform more complex operation such as finding the numerical
mean of the elements, element-wise multiplication between two arrays, and so
on. NumPy also has inbuilt functions to perform matrix operations such as matrix
multiplication, transpose, rank, finding Eigen values, and Eigen vectors. You can
also perform operations on rows and columns. Specify axis = 0 for column-wise
and axis = 1 for row-wise operations. The default is axis = None. A few popular
mathematical operations are shown in the following code. Modify and execute the
code at your end to play with various mathematical operations.

>>arr_1 = np.array([[1, 2 ,3], [4, 5, 6], [11, 12, 13]])

 arr_2 = np.array([[7,8,9],[10,11,12], [14, 15, 16]])

 print("sum of the arr_1 and ar_2")

 print(np.add(arr_1, arr_2))

Crash Course on Python and TensorFlow Basics 37

 print("subtract between arr_2 and arr_1")

 print(np.subtract(arr_2, arr_1))

 print("element wise multiplication")

 print(np.multiply(arr_1, arr_2))

 print("matrix multiplication of arr_1 and arr_2")

 print(np.matmul(arr_1, arr_2))

 print("average of elements in arr_1=", np.mean(arr_1))

 print("average of elements in arr_1 column-wise=", np.mean(arr_1,
axis=0))

 print("average of elements in arr_1 row_wise=", np.mean(arr_1, axis=1))

Random number generation
In Chapter 3, Gearing with Deep Learning, we will learn about neural networks. When
we train a neural network, we basically iteratively update the weights for different
units (nodes) of the network to reduce a loss function. The initial values of the
weights are set by some random numbers, which are updated to the optimum
values. In Python, we can easily generate an array or a matrix of random numbers
of any dimension. The random module under NumPy contains various functions for
generating random numbers.

The randint() function generates a random integer number, an array, or a matrix
of any given dimension within a given range as given in the input argument. Here,
The random numbers are drawn from a discrete uniform distribution. The rand()
function gives a random floating point number between 0 and 1 drawn from a
uniform distribution. The function only takes the dimension of the array or matrix
you want to generate as input and generates it with random samples. The randn()
function is similar to the rand() function, but it draws random samples from a
standard normal distribution of zero mean and unit variance to populate the matrix.

Please note as the numbers are generated randomly, each time you call these
functions, a new set of random data will be generated. Hence, when you execute the
code, the output printed in the console will be entirely different than what is shown
in the code examples.

The following code example shows how random numbers can be generated using
the random module under NumPy:

38 Hands-on TinyML

>>from numpy import random

 random.seed(5)

 print("A random number between 0 and 10 = ", random.randint(10))

 print("A 3X3 rmatrix of random numbers between 10 and 20 = ")

 print(random.randint(10,20, (3,3)))

 print("A 3X3 rmatrix of random numbers betwen 0 and 1 = ")

 print(random.rand(3,3))

 print("A 3X3 rmatrix of random numbers from a unit normal
distribution = ")

 print(random.randn(3,3))

 # create a large matrix with random.randn(). Its mean and variance
will be close to 0 and 1

 randn_matrix = random.randn(500,100)

 print("mean and variance of a large randn matrix : ", (np.
mean(randn_matrix), np.var(randn_matrix)))

The code output in one run is shown in figure 2.13: Run it several times to see the
different output in different run.

Figure 2.13: Generating random numbers in NumPy

As mentioned, when you call the functions under the random module, you will get
completely different sets of random numbers every time you execute. However,
you can get the same output by setting a fixed seed at the beginning. This is done
by calling the seed() function at the beginning before calling the functions that
generate random numbers. It takes an integer as input and sets the seed accordingly

Crash Course on Python and TensorFlow Basics 39

to generate a fixed set of random numbers. Just add random.seed(5) at the beginning
of the previous example, and you will get the same set of outputs. Replace 5 with a
different integer to get a completely different set of data. Refer the following code

>>random.seed(5)

 print(random.rand(3,3))

It will produce the same output every time.

Matplotlib library
Matplotlib is a Python library for data visualization, plotting of data in graphical
format, and creation of interactive animations. Most of the utilities of Matplotlib
lie under the pyplot module, which is popularly used for static data plotting. The
library can be imported by the following command:

>>import matplotlib.pyplot as plt

You can plot both Python lists or NymPy arrays. A simple example of plotting a
sinusoidal wave stored in a NumPy array using the matplotlib library is shown in
the following example. We define a sinusoidal function and plot it using matplotlib
libraries. The plot() function is used to plot the waveform in the console. We can also
assign labels to the axes and add a title to our plot. It has two main input arguments.
The first argument is the array corresponding to the x-axis, and the second one is the
array corresponding to the y-axis. Both arrays should have the same dimension. You
can also set the axis names and titles for your plot. Refer to the following code:

>>import numpy as np

 import matplotlib.pyplot as plt

 x = np.linspace(0,50,100)

 y = np.sin(x)*np.pi/180

 plt.plot(x, y)

 plt.xlabel("time axis")

 plt.ylabel("amplitude")

 plt.title("a sinusoidal wave");

40 Hands-on TinyML

The output is shown in figure 2.14:

Figure 2.14: Plotting a sinusoidal waveform using Matplotlib

Note that if you are using IDEs other than Colab or executing your scripts from a
command line, you have to add plt.show() at the end of the preceeding code in
order to visualize the plots.

Matplotlib allows the usage of various colors and font sizes in the plot. The generated
plots can also be saved as images for creating reports or presentations. Using the
subplot() function, you can draw multiple plots in a single image. In the following
example, we define a sinusoidal wave, add some random noise to it, and plot the
two waveforms separately using the subplot() function. In the following code, we
have plotted the two waveforms vertically. They can also be plotted horizontally by
changing it as plt.subplot(1,2,1) and plt.subplot(2,2,1), respectively. You are
encouraged to try that too. Similar to the previous example, you can also provide
axis labels and add titles to the plots. Refer to the following code:

>>from numpy import random

 x = np.linspace(0,50,100)

 y = (np.sin(x)*np.pi/180)*2

 y_noisy = y+ np.random.normal(0,0.05,size=100)

 plt.subplot(2,1,1)

 plt.plot(x,y);

Crash Course on Python and TensorFlow Basics 41

 plt.subplot(2,1,2)

 plt.plot(x,y_noisy);

The code output is shown in figure 2.15:

Figure 2.15: Example of subplot in Matplotlib

Apart from these, Matplotlib also supports statistical plots for data visualization,
such as pie-charts, bar-plots, histograms, and so on.

Pandas library
Pandas is another popular library having various functions for reading, analyzing,
and manipulating data. Large-scale data can be easily processed in Pandas. Execute
the following command to import the Pandas library.

>>import pandas as pd

Pandas deals with three different data structures, Series, DataFrame, and Panel. A
Series is a labeled 1D homogeneous array of immutable size. DataFrames and Panels
are labeled 2D and 3D structures of heterogeneous data with mutable size. While the
Pandas library has wide functionalities, we will briefly discuss here about Pandas
DataFrames. DataFrames are popularly used to store multi-dimensional data
obtained from various structured formats such as .TXT and .CSV.

In the following code example, we read the California housing dataset, “california_
housing_train.csv,” which is already stored in the Colab workspace. This dataset
contains housing prices in California along with various attributes that determine

42 Hands-on TinyML

the price. A CSV file can be read in Pandas by calling the read_csv() function, and
the content will be loaded in a DataFrame. The columns attribute will give you
different column names available in the CSV file. A DataFrame can also be converted
into a NumPy array for further processing.

>>import pandas as pd

 df = pd.read_csv("https://storage.googleapis.com/mledu-datasets/
california_housing_train.csv", sep=",")

 print(type(df))

 print(df.columns)

Refer to figure 2.16 for code output:

Figure 2.16: Reading csv file using Pandas

Data corresponding to a particular column can be fetched by calling the column
name. In the preceding example, df[‘population’] will give you all the entries
corresponding to the population column. Using Pandas, we can perform various
mathematical operations such mean, mode, and so on, and also perform filtering of
data based on certain queries. The following code example prints the average and
median population in the dataset. Then it plots those entries where the population
is higher than 20,000:

>>print("maxium population = ", df['population'].max())

 print("median population = ", df['population'].median())

 filter = df['population'] > 20000

 print(df[filter])

Introduction to TensorFlow
TensorFlow is an end-to-end, open-source platform popularly used for the quick
implementation of machine learning algorithms. A rich ecosystem of tools, libraries,
and community resources has made it extremely popular among machine learning

Crash Course on Python and TensorFlow Basics 43

researchers and practitioners to develop and deploy various machine learning
algorithms with greater efficiency and flexibility. TensorFlow has become popular in
recent times for the quick development of complex deep neural network architectures
for both experimentation and developing production-ready software.

TensorFlow was originally developed by Google within their Machine Intelligence
Research Organization to conduct various machine learning and neural networks
related research. The initial version was released in 2015 under the Apache License 2.0.
TensorFlow 2.0, the newest stable version, was released in 2019. TensorFlow is highly
flexible. It supports a wide variety of programming languages, including Python,
C++, and Java. Moreover, it can run on CPU, GPU, and TPU for a faster processing of
large machine learning applications. TensorFlow is available in Linux, macOS X, and
Windows platforms. It also supports TensorFlow Lite, a highly optimized lighter
version of the original TensorFlow that is available on mobile computing platforms
such as Android, iOS-based smartphones, and Linux-based single board computers
like Raspberry Pi. TensorFlow Lite models can be further optimized using a few
standard APIs to run on microcontroller units. Hence, TensorFlow is heavily used
in TinyML applications. Visit the official TensorFlow website for more details2. To
summarize, some of the key features of TensorFlow are as follows:

• It is open-source
• Efficiently works with multi-dimensional data
• Provides a higher level of abstraction, which reduces the code length for the

developer
• Supports various platforms and architectures
• Highly scalable and provides greater flexibility for quick prototyping

TensorFlow, along with all its dependencies, is already installed in Colab. So, you
just need to import the libraries to write codes without any package installation.
TensorFlow can be imported by typing the following command in the code cell.

>>import tensorflow as tf

Once TensorFlow is imported, you can check the version by typing the command
tf.__version__. At the time of writing this book, the TensorFlow version in Colab
is 2.12.0, which may change with time. TensorFlow 2, or TF 2, is the newest version
which is significantly different compared to the previous version TF 1.x. In this
book, we will use TF 2 for all our programming. However, TF 2 provides a backward
compatibility module to use TF 1.x. The eager execution mode of TF 2 makes it easier
to create a machine learning architecture with lesser lines of code.

2 https://www.tensorflow.org

44 Hands-on TinyML

Tensors and datatypes
Tensors are the backbone of TensorFlow. A tensor can be considered as an
n-dimensional array similar to a NumPy ndarray. Tensors are defined by their
dimensions like, scalar number (0-D), vector (1-D), matrix (2-D), and other higher
dimensional arrays. TF 2 supports various data types, like:

• 8-bit, 16-bit and 32-bit, and 64-bit integers
• 32-bit and 64-bit floating point numbers
• 8-bit unsigned integers
• strings
• Boolean numbers

TF 2 has two primitive types of data, constants, and variables. A constant is an
immutable value that is defined only once during declaration. A variable is mutable
and can be modified and recomputed during programming.

The following code example shows the usage of constants in TensorFlow using TF
2. Note, unlike TF 1.x, TF 2 does not require to define a tf.Session() to execute an
operation.

>>a_scalar = tf.constant(1, name="const1")

 a_vector = tf.constant([10.0, 20.1, name="const2")

 a_matrix = tf.constant([[20, 25.5],[5.8, 27], name="const3")

 print(a_scalar)

 print(a_vector)

 print(a_matrix)

 print("shape of a_matrix = ", a_matrix.get_shape())

 print("rank of a_matrix = ", tf.rank(a_matrix))

Crash Course on Python and TensorFlow Basics 45

Refer Figure 2.17 for the code output:

Figure 2.17: Defining constants in TensorFlow

In the preceding code example, we have defined a scalar, a vector, and a 2-D matrix as
constants. Constants are defined by tf.constant(). Optionally, we can also provide
the name of a constant. Printing a constant displays its content, shape, and data type
of the content. We can also get the tensor shape by calling the get_shape() function.
The function tf.rank() gives the rank of a tensor.

Variables in TensorFlow are defined using tf.Variable(). The elements in a tensor
variable can be modified. A tensor can also be converted into a NumPy() array. Refer
to the following code example illustrating how to define variables in TensorFlow:

>>var_1 = tf.Variable([[[1.,2.,3.,],[4.,5.,6.]],[[7.,8.,9.],[10.,11.,
12.]]])

 print(var_1.value())

 var_1[0,1,2].assign(25)

 print("new tensor after modifying an element = ")

 print(var_1.value())

 # convert in to numpy array

 numpy_var = var_1.numpy()

 print("data type after conversion to numpy array = ", type(numpy_var))

Similar to NumPy, TensorFlow provides plenty of functionalities for standard
mathematical operations such as addition, subtraction, multiplication, averaging of
data, and various matrix operations.

46 Hands-on TinyML

Differentiation in TensorFlow
While training a neural network, we often use an algorithm called backpropagation
to update the network weights. Backpropagation involves a series of differentiation
operations to calculate the gradient of the weights. TensorFlow provides the API
tf.GradientTape for optimized differentiation. Once a mathematical expression is
defined, GradientTape.gradient(target, source) computes the gradient of the
target with respect to the source. The following code example shows the usage
of GradientTape() on scalar tensors to perform a simple differentiation task on the
function y at x = 5.

>>x = tf.Variable(5.0)

 with tf.GradientTape() as tape:

 y = x**3+ 5*x+ 2

 dy_dx = tape.gradient(y, x) # calculates the gradient 3*x**2 + 5

 print(dy_dx.numpy())

Execute the code and check whether it calculates the differentiation accurately. The
differentiation operation can be further extended on multi-dimensional tensors. In
the following example, we define a variable termed as loss from multi-dimensional
tensors w, b, and constant x. The function tf.reduce_mean() computes the mean
of elements across dimensions of a tensor. Then, we compute the gradient of the
variable loss with respect to w and b:

>>x = tf.constant([[1.,2.,3.],[4.,5.,6.]])

 w = tf.Variable(tf.random.normal(3, 2)), name='w')

 b = tf.Variable(tf.zeros(2, dtype=tf.float32), name='b')

 with tf.GradientTape(persistent=True) as tape:

 y = tf.matmul(x, w) + b

 loss = tf.reduce_mean(y**2)

 print(loss)

 [dl_dw, dl_db] = tape.gradient(loss, [w, b])

 print(dl_dw.shape)

Crash Course on Python and TensorFlow Basics 47

Graphs and functions in TensorFlow
In TensorFlow 2, operations are executed eagerly by default, and eager executions
are imperative where the operations are executed immediately as they are called in
the program. Hence, it is easier to debug and provides better readability. However, in
TensorFlow 1.x, the default was graph mode. Graph execution allows code portability
outside Python. Here, computations are executed as a TensorFlow graph, which
creates a portable solution. A graph (tf.Graph) comprises of a set of operations (tf.
Operation), which are basically the nodes of the graph, and tensors which represent
the units of data flowing between the operations. The graphs can be saved, run,
and restored without the underlying Python code. As a result, TensorFlow graphs
can be deployed in environments that do not have a Python interpreter, such as
smartphones or microcontrollers.

We can switch from eager execution to graph execution in TensorFlow 2 using
tf.function. A graph can be created in TensorFlow using tf.function, which takes
a Python function as input and creates a Function, a Python callable that builds a
TensorFlow graph from a standard Python function. A Function encapsulates
multiple graphs and enables faster execution and deployability. Moreover, graph
execution is much faster than eager execution.

The following code example shows how a simple function, my_func(), can be
converted into a Python callable Function, tf_myfunc() using @tf.function. The
function multiplies two tensors, and the result is added with another tensor to
produce the output. When executed, it is converted into a graph for execution.

>>def my_func(x, y, b):

 return tf.matmul(x,y) + b

 # convert it to a Function

 @tf.function

 def tf_myfunc(x):

 y = tf.constant([[2.0], [3.0]])

 b = tf.constant(4.0)

 return my_func(x, y, b)

 # call the function tf_myfunc

 tf_myfunc(tf.constant([[10.0, 15.0]])).numpy()

48 Hands-on TinyML

Refer to figure 2.18 for the code output:

Figure 2.18: Converting a Python function into a Python callable Function in TensorFlow

While tf.Graph converts the in-built TensorFlow operations into a graph, a
dedicated library called AutoGraph, is used to convert the remaining Python logic
for graph-generating code. You can view the graph-generating output of Autograph
for the preceding example by executing the following command:

>> print(tf.autograph.to_code(my_func)

End-to-end Machine Learning algorithm using
TensorFlow
So far in this chapter, we have discussed the basics of Python and TensorFlow with
simple examples to get some insights. Now, we will apply our learning to create
our first machine learning application, a simple linear regression model. Linear
regression is a supervised machine learning approach that finds a linear relationship
between a set of dependent (y) and independent (x) values so that if a new set of x
values is given as input, the model can predict the corresponding y value with some
accuracy. Linear regression assumes a linear relationship exists between x and y,
which can be represented by the following:

Here, the parameters w and b are termed as the slope and intercept, which are the
two constants in the equation. These two parameters are learnt during training on
a given set of data having x and corresponding y values. It tries to find the best
possible values for w and b so that a straight line can be fitted on the data. Once
done, we can predict an unknown y from a given x using the w and b values obtained
in training. The independent variable x can be single or multi-variate. In machine
learning, w and b are also called the learning parameters. To be more precise, w is
called as weight, and b is called as bias. The following steps occur during training:
Initially, some random values are assigned for w and b, and the corresponding y
value is calculated for all the x values in the training data in the training data using
the preceeding equation. As expected, the calculated y values will be no way near the
actual values of y. We define a loss function, J, which measures the Mean Squared
Error (MSE) between the predicted and actual y values for all training examples,
Hence:

Crash Course on Python and TensorFlow Basics 49

Here, n is the number of training data, predi, and yi are the predicted value and
actual value of ith data in the training set. The objective of the training process is
to iteratively update the weights to get the best values for w and b to minimize the
value of J. Gradient Descent is an optimization approach popularly used to meet the
objective. It is a first-order optimization algorithm to find the local minimum of a
function. It comprises the following steps:

1. Make some initial assumptions of the weights (that is, w and b).
2. Calculate the first-order derivative of the loss function, J, with respect to the

weights to compute the gradient or slope.
3. In order to get a local minimum, move away from the gradient of the loss

function at the current point by alpha (α) times. Next, update the current
weights. The term, α is called the learning rate.

4. Repeat Steps 2 and 3 until J is minimized.

Now, we will write a script using TensorFlow to build a single-variate linear
regression model. Create a new notebook in Colab. Let us start by importing the
necessary Python libraries in the first code cell:

>>import tensorflow as tf

 import numpy as np

 from numpy import random

 import matplotlib.pyplot as plt

Next, we will create our dataset for our application. Our dataset comprises both
the dependent variable, y, and the independent variable, x, that follow a linear
relationship with a slope (w) = 2 and an intercept (b) = 3. To give it a more practical
feel, the y values are added with some random noise (say σ). Hence, the actual
relationship is as follows:

Let us assume the x values range between 0 and 5, and we create 500 data points in
our dataset. The following code generates our data.

>>x = np.linspace(0.,5., 500)

 y = 2 * x + 3 + np.random.randn(len(x))

 plt.plot(x,y, '*')

50 Hands-on TinyML

 plt.xlabel('x values')

 plt.ylabel('y values')

When executed, the code shows the distribution of the data points in a scatter plot.
See figure 2.19:

Figure 2.19: Scatter plot of the generated data points in our example

Figure 2.19 shows there is a clear visual linear relationship between x and y. We will
create a linear regression model to find the best-fit line.

Now, we will split the dataset into training and test set. The training data will be
used to learn the values for w and b. The test data will be used for performance
evaluation. For that, we will use a Python library, scikit-learn. It is an open-source
library featuring various machine learning algorithms.

The following script will randomly split our datasets into two parts, 75% of the data
for training and the remaining 25% for testing. Assigning a value to the parameter
random-state will ensure we get the same split every time, which is good for the
repeatability of the results.

>>from sklearn.model_selectionimport train_test_split

 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =
0.25, random_state = 100)

In this problem, we have two trainable parameters w and b. We set some random
values as their initial weights.

Crash Course on Python and TensorFlow Basics 51

>>w = tf.Variable(np.random.randn())

 b = tf.Variable(np.random.randn())

Now, we will define two helper functions. The first function calculates the loss
function, which is the MSE between the predicted and actual values. In the second
function, we calculate the gradient of the loss function with respect to w and b. We
will use the tf.GradientTape API to perform the operation. Refer to the following
code:

>>def calc_mse(x, y, w, b):

 y_pred = w * x + b

 mse = tf.reduce_mean(tf.square(y_pred – y))

 return mse

 def calculate_gradient(x, y, w, b):

 with tf.GradientTape() as tape:

 loss_value = calc_mse(x, y, w, b)

 w_grad, b_grad = tape.gradient(loss_value, [w, b])

 return w_grad, b_grad

Now, we are all set to train our linear regressor. We will set a learning rate (α) of 0.001
and train for 500 epochs to reduce the loss. The parameters w and b are updated
based on the calculated gradient in every epoch. We also store the corresponding
MSE value in every epoch in a list. Refer to the following code.

>>num_epochs = 500

 learning_rate = 0.001

 loss = [];

 epoch_list = []

 for epoch in range(num_epochs):

 w_grad, b_grad = calculate_gradient(x_train, y_train, w, b)

52 Hands-on TinyML

 dW, dB = w_grad * learning_rate, b_grad * learning_rate

 w.assign_sub(dW)

 b.assign_sub(dB)

 loss.append(calc_mse(x, y, w, b))

 epoch_list.append(epoch)

 if epoch % 10 == 0:

 print(f"Epoch: {epoch}, loss {calc_mse(x, y, w, b):.3f}")

Now, execute the code. It will take few seconds to run on Colab using the CPU. It
will also print the MSE value in every 10 epochs. We can use the following code to
plot and see how the overall MSE loss gets reduced with increasing epochs.

>>plt.plot(epoch_list, loss)

 plt.xlabel('number of epochs')

 plt.ylabel('loss')

The plot in figure 2.20 shows how the loss is reducing with epochs, which indicates
that the predicted values are getting closer to the actual values:

Figure 2.20: Plotting MSE loss versus epochs

We will take the value of w and b at the end of 500 epochs as their optimum value,
and these are stored in a Python dictionary for prediction.

Crash Course on Python and TensorFlow Basics 53

Finally, we will create a function to check how our linear regressor performs on the
test data. The following predictor() function can be used for the prediction of y
from new x values based on the training parameters.

>>params = {"weight":w, "bias":b}

 def predictor(x):

 return params["weight"] * x + params["bias"]

Before prediction, we will check how good the linear regressor model is. The
following code makes a scatter plot of the training data and plots the straight line
based on the w and b values obtained via training the linear regressor:

>>plt.plot(x_train, y_train, '*')

 x_train_sort = np.sort(x_train)

 pred_final = predictor(x_train_sort)

 plt.plot(x_train_sort, pred_final,'r');

 plt.xlabel("x values");

 plt.ylabel("y values");

We can conclude that the resulting straight line is a good fit for the training data. See
figure 2.21:

Figure 2.21: Fitting the straight line obtained by linear regression on the training data

54 Hands-on TinyML

The following code segment predicts the value of y on the entire test set using the
function predictor(). It also calculates the MSE between the predicted and the
actual values of y. Finally, it shows the predicted values on randomly selected five
test data points along with the actual values for comparison.

>>y_test_pred = predictor(x_test)

 Print("MSE on all test data", calc_mse(x_test, y_test,
params["weight"], params["bias"]).numpy())

 # select 5 random test data and check the performance

 indx = np.random.randint(0, 250, 5)

 for i in range(len(indx)):

 print(f"predicted value : {y_test_pred[i]:3f}, actual value {y_
test[i]:.3f}")

Conclusion
Python is a very popular programming language in machine learning for researchers
and also for developing production-ready software. A good understanding of
Python is a prerequisite to fully understand the rest of the topics covered in the
book. This chapter has been designed as a crash course to brush up on your Python
programming knowledge before moving to the more complex part of programming
in deep learning and TinyML applications. We assume that the readers have some
fundamental knowledge of Python programming. Those who require an in-depth
knowledge of Python and its various libraries are strongly encouraged to read the
various resources available in print and also in digital mediums. The readers should
try to execute the examples covered in this book at their end and are also strongly
encouraged to modify, tweak, and extend them to gain more confidence in writing
their own codes independently.

In this chapter, we have briefly covered the fundamental aspects of Python through
examples. We have also discussed a few of the Python libraries, which are frequently
required in building machine learning applications. Subsequently, we have briefly
discussed about TensorFlow, an open-source library that is very popular in creating
machine learning and advanced neural network applications. We have covered
various datatypes of TensorFlow through examples. Finally, we have shown how
TensorFlow can be used in creating an end-to-end machine learning application by
creating a simple univariate linear regression model.

Crash Course on Python and TensorFlow Basics 55

Throughout this book, we have used Google Colab notebook for writing and
executing our Python scripts, which is entirely free to use, cloud-based, and does
not necessarily require any software installation on your host machine. However,
you need to be connected to the internet to get access to a remote Python runtime
in order to execute your scripts. For experimental purposes, the readers are also
encouraged to create the Python environment on their machine by installing the
necessary libraries in order to run a few of the test examples. Python and TensorFlow
can be easily installed on Windows, Linux, or macOS X computers. The readers can
refer to the official website of Python and TensorFlow for detailed guidance for
installation. The websites also contain detailed documentation and other various
aspects of Python with examples, which the readers can find useful.

Key facts
• Python is a general-purpose, high-level, interactive, and interpreted program

language popularly used in machine learning and data science.
• Python codes are portable and can be run on various operating systems, and

can be easily integrated with other programming languages such as C++,
JAVA, and so on.

• Google Colab is a browser-based Python IDE where you can easily run your
programs on cloud.

• NumPy is a popular Python library for performing various mathematical
operations on multi-dimensional arrays.

• Matplotlib allows to plot interactive graphs in Python.
• You can read and parse data from large CSV files and manipulate data using

Pandas.
• TensorFlow is an end-to-end open-source platform for building and

deploying machine learning and deep neural network applications.
• Tensors are muti-dimensional data array.
• Thanks to the graph execution mode, TensorFlow programs are portable

across various platforms.

Further reading
1. Beazley, David, and Brian K. Jones. Python cookbook: Recipes for mastering

Python 3. “O’Reilly Media, Inc.”, 2013.
2. Pajankar, Ashwin. “Introduction to Python.” In Python Unit Test Automation,

pp. 1-17. Apress, Berkeley, CA, 2017.

56 Hands-on TinyML

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

3. Cutler, Josh, and Matt Dickenson. “Introduction to Machine Learning with
Python.” In Computational Frameworks for Political and Social Research with
Python, pp. 129-142. Springer, Cham, 2020.

4. Joshi, Prateek. Artificial intelligence with Python. Packt Publishing Ltd, 2017.
5. Campesato, Oswald. TensorFlow 2 Pocket Primer. Stylus Publishing, LLC,

2019.
6. Singh, Pramod, and Avinash Manure. Learn TensorFlow 2.0: Implement

Machine Learning and Deep Learning Models with Python. Apress, 2019.

Introduction
In Chapter 1, Introduction to TinyML and its Applications, we briefly talked about
machine learning and deep learning. In this chapter, we will learn more about deep
learning. Deep learning is a subset of machine learning that imitates the learning
process of the human brain. Deep learning is possibly the hottest technology right
now in computer science, which is heavily used by all major enterprises and start-
ups in different applications. There is a subtle difference between deep learning
and traditional machine learning. Traditional machine learning algorithms, such as
linear regression, support vector machine, or random forest require structured data,
termed as features, as inputs for making a prediction. That means raw unstructured
data cannot be directly applied to a machine learning framework. Let us take a real-
life example. Suppose you want to identify an animal in an input image. What you
do? You look for certain unique properties, like the shape and size of the animal, its
color, and some other distinguishing markers, such as the presence of whiskers or
canine, and so on. These can be termed as the features of the animal.

We do a similar thing in traditional machine learning. The user needs to compute the
features from the input data containing its salient properties as a basic pre-processing
step. The features are mostly a set of numerical values. These are then applied to

Chapter 3
Gearing with Deep

Learning

58 Hands-on TinyML

the machine learning algorithm as input for performing a certain task, for example,
classifying an object from an image or predicting an event. Machine learning
algorithms can be supervised or unsupervised. As mentioned earlier, a supervised
machine learning algorithm has two phases, training, and testing (evaluation). The
machine learning model is created during training, and it is evaluated in testing.
The performance of a machine learning application widely depends upon how
discriminating the input features are. It can be expected that computing the relevant
features manually from the input is often difficult, time-consuming, and may require
application-specific domain knowledge.

Deep learning tries to eliminate the pre-processing step in machine learning by
automatizing feature extraction. It can take unstructured data like rich media and
entertainment data, geospatial data, and audio or text data as input and automatically
extracts the relevant features during training. For example, you can directly train a
deep learning algorithm with an ample number of labelled images of dogs and cats
to create a classifier that can accurately classify cats and dogs from unseen images.
The deep learning model will automatically determine the decisive features from
the input data during training and use them for prediction. However, the extracted
features might not be human interpretable.

Artificial Neural Network (ANN), commonly known as a neural network or a
feedforward network, is the heart of deep learning models. An ANN comprises
several connected layers, with each of them having multiple nodes, which are also
called as neurons. There is an input layer, several intermediate hidden layers, and
an output layer. Each node has an associated weight and a threshold. If the input to
a node is above the threshold, the node is activated, and the information is passed to
the next node in a forward direction, all the way toward the output. There are more
complex deep neural network architectures like Convolutional Neural Networks
(CNN) that have multiple layers to progressively extract higher-level features
from the input. A CNN produces much superior performance than ANNs in image
processing and computer vision applications.

Structure
In this chapter, we will discuss the following topics:

• Theory of Artificial Neural Network (ANN)
 o Binary cross entropy loss function
 o Neural network activation functions
 o Learning the neural network weights—the backpropagation algorithm

Gearing with Deep Learning 59

• Introduction to Convolutional Neural Network (CNN)
 o Architecture of A CNN
 o Putting them all together
• Neural network hyperparameters

Objectives
In this chapter, we will briefly talk about the basic theory of neural networks along
with some of the underlying mechanisms. We will start with the concept of a simple
neural network, the activation functions, and the learning process of a neural
network via backpropagation. Later, we will also discuss about Convolutional
Neural Network (CNN), a powerful deep learning algorithm popularly used in
modern image processing and computer vision applications. The concept of neural
networks involves lots of underlying mathematics. However, in this chapter, we will
try to bypass the complex mathematical formulation as much as possible and only
cover the basic fundamentals of neural networks for an easy understanding of the
readers. The learning in this chapter will be required in the later part of the book
to understand the TinyML projects, which will primarily use CNN as the machine
learning model.

Theory of artificial neural networks
The concept of an artificial neural network, or ANN, is analogous to the human
brain. The human brain has possibly the most powerful neural network. There are
roughly 100 billions of neurons in our brain that form the central nervous system.
Each neuron is connected to another 10,000 neighbouring neurons.

Figure 3.1 shows the image of a biological neuron. A neuron is an electrically
excitable biological cell that accepts, processes, and transmits information through
electrical and chemical signals. It works as an electrical cable that has three parts: the
neuron cell body, the dendrites, and the axon. The electrical impulse arrives on the
dendrites, gets processed on the cell body, and then moves to another neuron along
the axon. At the end of the axon, the contact with the dendrite of the next neuron is
made through a synapse. In order to enable us to react to a sudden change to our
environment, the ascending neurons transport stimuli to the central nervous system,
and in return, the descending neurons send the signal to the body muscles to react.

60 Hands-on TinyML

Figure 3.1: A biological neuron

Similar to the human neural network, an artificial neural network also consists of
hundreds and thousands of artificial neurons. They are also called as nodes or units
of the ANN. The neurons are internally connected to propagate information. Figure
3.2 shows the structure of an artificial neuron that can be considered as the core
building block of an ANN:

Figure 3.2: Architecture of a single neuron in an artificial neural network

The neuron in our example has three inputs, , , and . Each of them is associated
with the corresponding weights: , , and , respectively. There can be an
additional bias term, b. The weights determine the importance of each input applied
to the neuron. The weight values and the bias are the trainable parameters in the
neuron. Each neuron performs two operations. The inputs are multiplied by their

Gearing with Deep Learning 61

respective weights and are summed up together with the bias term to form the
parameter z, where.

Subsequently, z is applied to a function f() to produce the output of the neuron, y.

The function, f(), is called the activation function of the neuron. It typically decides
whether a particular neuron remains active or inactive in the neural network. In
general, non-linear activation functions are used. Later in this chapter, we will learn
more about different activation functions used in neural networks.

Now, let us understand the structure of an artificial neural network. A neural
network is a multi-layered structure where each layer contains several neurons. The
output of a neuron in one particular layer goes as input to all the neurons in the
following layer. Neural networks are used in machine learning for both classification
and regression purpose. Figure 3.3 shows the architecture of a multi-layered neural
network for binary classification:

Figure 3.3: A neural network architecture

The multi-layered neural network shown in figure 3.3 has four layers. The first layer
is called the input layer, which represents the input feature. In figure 3.3, the input
layer of the network takes three-dimensional feature as input and an additional bias
term. Then comes two intermediate layers, which are termed as the hidden layers
followed by the output layer. The hidden layers contain multiple neurons, as shown
in figure 3.2. The hidden layers are responsible for extracting complex non-linear
patterns from the input that are used to determine the output.

62 Hands-on TinyML

In our neural network, the first hidden layer has three neurons, and the second
hidden layer has two neurons. Of course, you can have more hidden layers and
higher number of neurons in each hidden layer. A network with more hidden layers
is, in general, more complex in nature. The neurons in the hidden layers take their
inputs and perform some non-linear mathematical transformation through an
activation function. Finally, there is an output layer with a single neuron that has
two distinct output values, a binary 0 or 1 indicating two different output classes (for
example, cats versus dogs).

Now, let us understand some mathematical notations. The inputs to the network
in the preceding figure is represented by , and the bias term is represented by
b. The neurons in the first hidden layers are represented by and the neurons in
the second hidden layer are represented by . Here, i, j, and k represent the data
dimension in the layers. In our example, i=3, j=3, and k=2. The information in the
ANN is propagated in one direction from the input toward the output layer. Hence,
this type of network is also called as feedforward network. Each neuron in a hidden
layer is connected with all the neurons in the next layer. This kind of layer is called as
fully connected layers or dense layers, and the network is called a fully connected
neural network. As mentioned earlier. The inputs to a neuron are multiplied by their
corresponding weights and are summed up along with the bias term before being
applied to the activation function, which determines the output.

The network in our example has a single neuron in the output. Hence, it can only be
used for binary classification. However, the output layer can be modified to solve a
multi-class classification problem (for example, cats, dogs and horses).

Binary cross entropy loss function
In Chapter 2, Crash Course on Python and TensorFlow Basics, we created a linear
regression model for predicting the value of a variable, y, from an input variable,
x. In linear regression, the prediction is unbounded continuous numbers, such as
the price of a property, salary of a person, or so on. Remember, we used the Mean
Squared Error (MSE) between the predicted and the actual values of the datapoints
in the training dataset as the loss function. The loss function was minimized during
training to update the learning parameters. However, in figure 3.3, we have considered
a neural network for binary classification. A classifier solves a different problem
than a regressor. Instead of predicting continuous values, it predicts discrete values
which are also called as class labels. For example, a binary classifier can be used to
predict whether the animal present in an image is a cat or not, or for an incoming
email, whether it is spam or not. For this kind of problem, we will use a different loss
function, the binary cross entropy (BCE) or the log loss function.

Gearing with Deep Learning 63

The binary cross entropy loss function looks as the following:

Imagine we want to create a classifier that will predict whether the input image
contains a cat or not. For a given input, binary cross entropy tries to predict in
a probabilistic manner how good the prediction is. Suppose y is the actual label
(say 1 for cat and 0 for not cat) for a given input x. We denote p(y) as the predicted
probability of that data point being 1 for all N numbers of points in the dataset. For
example, for an input image of a cat, predicting a probability 0.94 indicates it is a
good prediction. Whereas a predicted probability of 0.2 will be considered as a bad
prediction. For each positive example that is, for y = 1, the value of log(p(y)) measures
the log probability of predicting it as 1, and for each negative example that is, y = 0,
log(1–p(y)) is the log probability of predicting it as 0. Since the probability value lies
between 0 and 1, the logarithmic value is always negative. Hence, the minus sign is
added at the beginning of the preceding equation to measure the loss function, J, as
a positive value. The loss value increases as the prediction probability diverges from
the actual labels and becomes small as the predicted values get closer to the actual
labels. During training, the loss function is minimized using some algorithms like
gradient descent via updating the neuron weights.

For a multi-class classification problem with M different target classes, the expression
for the loss function becomes:

In classification problems, the class labels are often represented by categorial values
like strings or some abrupt numbers. In machine learning, we use a technique called
one-hot encoding to represent the categorial class labels into numerical values. Here,
the class labels are converted into array-like structures with numerical ordering to
feed them to a machine learning model. For example, we have an image dataset
having four different classes of cat, dog, tiger, and horse; the one-hot encoding for
the different classes can be represented as [0,0,0,1], [0,0,1,0], [0,1,0,0], and [1,0,0,0].

Neural network activation functions
Previously, we have briefly talked about activation functions. An activation function
determines whether a neuron in a network will be activated or not. All neurons in

64 Hands-on TinyML

a network are not activated. A neuron can propagate its information to the next
layer only when it is activated. In other words, the activation functions perform the
complex mapping between the input and the output variables. The simplest form of
activation function is the linear activation function that takes an input and directly
passes it as output. However, a linear activation function is not very useful in a
neural network as it passes everything that comes in. This is where the non-linear
activation functions come into the picture.

Non-linear activation functions help the neural network to learn more complex
features from the data. Please note: an activation function must be differentiable
to facilitate the training of the neural network. In the next section, we will discuss
how a neural network is trained by calculating the gradient of the cost function with
respect to the weights. A few popular activation functions commonly used in neural
networks are explained as follows:

Sigmoid activation function
It is an S-shaped non-linear activation function whose values lie between 0 and 1. It
can be represented by the following equation:

As shown in figure 3.4, the output value f(z) tends toward 1 as the input value z
moves toward positive, and f(z) tends to 0 as z moves towards negative from 0. The
value of f(z) = 0.5 when z = 0. Sigmoid activation function is typically used in the
output layer of a neural network for binary classification.

Figure 3.4: Sigmoid activation function

Gearing with Deep Learning 65

Tanh activation function
Hyperbolic tangent or tanh activation function is a shifted version of the sigmoid.
Its output ranges between –1 and +1. The equation for tanh function is given by the
following:

The corresponding plot is shown in figure 3.5. The function gives an output close to
+1 for a positive input value z and returns close to –1 for a negative value of z. It
returns 0 when z = 0. Tanh activation function can be used in the hidden layers in
some neural networks. Since the output lies between –1 and +1, it helps in centering
the data by bringing the mean close to 0. This makes the training process easier.

Figure 3.5: tanh activation function

ReLU activation function
One major limitation of the sigmoid and tanh activation functions is the vanishing
of the gradients. These activation functions map large input values into a smaller
range. Hence, a large change in the input will cause a small change in the output.
As a result, the gradient of the functions is close to zero. Hence, there are situations
in deep neural networks when there is virtually no update in the weights during
training over the iterations. This situation is called the vanishing gradient problem.
The problem can be resolved by using the Rectified Linear Unit (ReLU) activation
function. The expression of ReLU is given by the following:

66 Hands-on TinyML

It returns the same input value as the output for a positive value of z and returns 0
otherwise. The shape of ReLU is shown in figure 3.6. It is the most popular activation
function used in the hidden layer of deep neural networks.

Figure 3.6: ReLU activation function

Softmax function
The softmax function takes a vector of k real values and returns a vector of k real
values whose sum is equal to 1. Softmax function is typically used in the final layer
of a multi-class neural network for predicting the probability of the target classes.
For an input vector z = , the softmax function is calculated as follows:

Learning the neural network weights—the
backpropagation algorithm
Neural networks are comprising of several interconnected layers from the input to
the output. Each layer contains multiple neurons or nodes. The nodes have their
inputs that are multiplied by the irrespective weights and are added up along with
the bias term, which is then applied to an activation function to determine the output
that propagates to the nodes in the next layer. The weight and the bias terms are the
parameters of the network. A deep neural network can have several hundreds or
thousands, or even millions of nodes. Now the question arises, how does a network

Gearing with Deep Learning 67

determine the weight values for the nodes? This is done by a learning algorithm
termed as the Backpropagation algorithm.

The backpropagation algorithm was introduced in the 1960s, but it got popular in
the 1990s in a famous paper by David Rumelhart, Geoffrey Hinton, and Ronald Williams,
which described how backpropagation can be used for learning the weights of a
neural network.

In this section, we will provide a very simple explanation of the backpropagation
algorithm.

The concept of backpropagation is quite similar to the gradient descent used in
Chapter 2, Crash Course on Python and TensorFlow Basics, to estimate the weights in
linear regression. For a multi-layered neural network, the backpropagation algorithm
calculates the gradient of the loss with respect to the weights in a backward direction
from the output layer to the input.

Now, let us try to understand the backpropagation algorithm for a simple multi-
layered feedforward neural network shown in figure 3.7. The network takes a single-
dimensional input and passes it through two hidden layers and the output layer that
predicts two classes, 1 and 0. Each hidden layer has one single node. The weights
associated with the inputs to the hidden layers and the output layer are w(1), w(2),
and w(3), respectively. The network takes an input x and passes it through all the
layers to get an output y1. This is called forward propagation. The prediction error
is minimized by backpropagation via adjusting the weights in different layers.

Let us assume the actual label for that input is y. The loss function is defined by
J(y,y1). For binary cross entropy we know that the loss function returns a very
low value when the predicted value closely matches the target label. The weights
are initialized by some random values. The objective of the training is to adjust
the weights of the nodes at different layers in such a way that the loss function is
minimized. In gradient descent, it is achieved in an iterative manner by calculating
the derivative of the loss function J with respect to every weight in the network.

In a multi-layered network, the derivative of loss function with respect to a weight
located in the middle of the network can be computed using the chain rule. This is
given by the following:

The backpropagation algorithm first calculates the gradient with respect to the
weights in the final layer. These are then used to calculate the gradient of the previous
layers using the chain rule. This goes on all the way to the first layer.

68 Hands-on TinyML

Let us now consider the simple neural network taken in our example to understand
the concept of backpropagation:

Figure 3.7: A simple neural network for backpropagation

As mentioned earlier, it has a single input x and two hidden layers. Each hidden layer
is having a single node with weights w(1) and w(2), and the corresponding output h(1)
and h(2). Let us assume f() is the activation function for a hidden layer.

For the first hidden layer, the output can be calculated as follows:

For the second hidden layer:

For the output layer, the predicted output is as follows:

For a binary classification problem, we measure the binary cross entropy as the loss
function.

In backpropagation, we first calculate the gradients of the loss function with respect

to the weight of the output layer , then , and finally .
This can be done by applying the chain rule:

Gearing with Deep Learning 69

Once the gradients are calculated, the weights are updated by the following:

Here, α is termed as the learning rate. The weight values are initialized by random
numbers at the beginning of the training. The backpropagation algorithms update
them to the optimum values to reduce the loss function. The weights are updated
through a number of epochs on the entire training dataset. The training is assumed
to be completed when the loss function apparently reaches local minima, that is, the
loss value does not significantly reduce further. At this stage, the weights are saved.
The network with the saved weight can be used in the test phase, which can take
unknown data as input for making predictions.

In this section, we have explained the backpropagation in the simplest way
assuming a single-dimensional input and single node in each of the hidden layers.
The concept can be logically extended for large complex neural networks containing
multiple nodes in each layer. In that case, all the inputs to a particular node are first
multiplied by their respective weights and are summed up, and eventually applied
to the activation function to get the output.

Introduction to Convolutional Neural
Network
So far, we have discussed the key aspects of artificial neural networks. Although
multi-layered feedforward neural networks have been successfully used in various
machine learning applications, they still have scalability issues in handling large
input data in the form of image or video files. For example, suppose we want to
design an image classifier using a single-layered feedforward neural network where
the inputs are grayscale images of a resolution of 128 × 128 pixels. That means each
image can be considered as a matrix of dots having 128 columns and 128 rows. The
dots are called as pixels, and their value typically ranges between 0 and 255. For a
grayscale image, a 0 pixel value represents the color black, 255 represents white, and
the values in between represent various shades of gray. A value close to 255 indicates
the pixel is closer to white. A grayscale image has a single channel. That means the

70 Hands-on TinyML

actual dimension of the image is 128 × 128 × 1. For color images, the number of
channel is 3 (Red, Green, and Blue).

Recall the structure of the feedforward neural network in figure 3.3. The input to
the network is a 1D vector, not a matrix. Hence, an input image applied to that type
of network first needs to be reshaped into a vector having 128 × 128 × 1 = 16,384
elements. That means the input layer needs to have 16,384 nodes. Now, suppose we
have a single dense hidden layer with 500 nodes. Remember, each node in the input
layer is connected with all the nodes in the following hidden layers. So, it requires
16,384 × 500 = 8,192,000 connections and corresponding weight values between the
input and the first hidden layer. In a practical scenario, we may need to add multiple
hidden layers for a better performance. Hence, the size of the network exponentially
increases along with the number of parameters. It takes lots of time to train such a
huge network.

A convolutional neural network or CNN is a special type of neural network structure
that automatically processes the input data to extract relevant features that are
applied to the fully connected dense layers for classification. The main advantage
of CNN is that you do not need to do much pre-processing on the input data, as
CNN can take care of that. CNNs are popularly used in image processing, video
processing, and computer vision applications. CNN has its own set of grid-like
arrangements called filters that can extract the relevant features from the input via
convolution. In computer-based digital image processing, we use various filters to
control the brightness or contrast of an image, and to detect various edges inside it.
A CNN tries to automate those steps, which are later used as features for performing
a classification or a regression.

During training, a CNN itself discovers the best suitable filters for feature extraction
for the specific task. As a result, the whole feature extraction process is automated,
and it does not require hand-crafted feature computation. A major advantage of
CNN and other deep learning algorithms is they can automatically extract the most
relevant features from large unstructured datasets during training. This is particularly
important on sophisticated computer vision problems like face recognition and other
applications when you do not have enough domain knowledge to manually extract
the key features from the input.

In 1989, Lecun et al. proposed the first CNN architecture that was trained using
backpropagation for handwritten digit classification. CNN started getting more and
more attention in the early 2010s when they outperformed other machine learning
models in the annual competition of ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in the detection and classification of objects of various
categories from millions of input images. The CNN architecture evolved with

Gearing with Deep Learning 71

different deep architectures, namely, AlexNet (2012), VGGNet (2014), GoogleLeNet
(2014), and ResNet (2015).

Architecture of a CNN
The architecture of CNN varies depending on the application. However, a typical
CNN comprises the following layers:

• Input layer
• Convolutional layer
• Pooling layer
• Fully connected layer or dense layer
• Output layer

Input layer
The input layer represents the input to the CNN. The input data can be 1D (time-series
data), 2D (images), or 3D (videos). However, CNNs are primarily used for image
processing-related applications. For digital images, the input shape is represented
in Width × Height × nChannel format, where nChannel denotes the number of input
channels. For grayscale images, nChannel = 1, and for color RGB images, nChannel
= 3.

Convolutional layer
Convolutional layers are the heart of a CNN that are responsible for extracting
relevant information from the input (image). Convolutional layers are composed
of multiple filters or kernels that scan the entire image by performing convolution
operations. For a 2D input image, the convolution filters are also required to be of 2D.
Convolution has three operations, addition, multiplication, and shifting. Supposing
our input image has a dimension of 128 x 128, we want to perform the convolution
using a 3 × 3 filter. The process is done in the following manner:

1. Place the 3 × 3 filter on the top left corner of the input image.
2. Multiply the pixel values with the corresponding filter value and add them

up and return it as the central value for the scanned region.
3. Shift the filter to the right in horizontal and then in vertical direction.
4. Repeat Steps 2 and 3 until it scans the entire image.

72 Hands-on TinyML

In image processing, the convolution operation transforms an image by applying
a filter over each pixel and its local neighbour. The size and the values of the filter
determine the transformation.

Let us take an example to understand the convolution process more clearly. Suppose
we have an input grayscale image of resolution 5 × 5 × 1. In a simple way, let us
assume the pixels form a 5 × 5 matrix of the following values, shown in figure 3.8:

Figure 3.8: Input matrix of shape 5 × 5

We also have a 3 × 3 filter with the following kernel values, shown in figure 3.9, to
perform the convolution operation:

Figure 3.9: The 3 × 3 kernel for convolution

Now, let us see a step-by-step manner of how to compute 2D convolution on that
image using the filter:

1. In the first step of convolution, we place the filter on the top left corner of the
input. Do an element-wise multiplication at each cell, sum up the multiplied
values, and store the value in the top left corner of the output matrix. The
scanned region is shown on the left, and the corresponding output in the
right of figure 3.10:

Gearing with Deep Learning 73

Figure 3.10: Step 1

2. In Step 2, we shift the filter one pixel right to the input and repeat the
operation in Step 1. The resulting value is stored in the second cell of the
output matrix. Check out figure 3.11:

Figure 3.11: Step 2

3. In the next step, we again shift one pixel right and repeat Step 1. The resulting
value is stored in the third cell of the output matrix. This leads us to the
following figure, figure 3.12:

Figure 3.12: Step 3

74 Hands-on TinyML

4. In Step 4, the filter is moved one pixel down vertically. The output is stored
in the first column of the second row, as shown in figure 3.13:

Figure 3.13: Step 4

5. In Step 5, we again move one pixel right. This leads us to figure 3.14:

Figure 3.14: Step 5

6. In Step 6, we again move one pixel right. This leads to figure 3.15:

Figure 3.15: Step 6

Gearing with Deep Learning 75

7. In Step 7, we move one pixel down vertically. This leads us to figure 3.16:

Figure 3.16: Step 7

8. In Step 8, we move one pixel right. This leads us to figure 3.17:

Figure 3.17: Step 8

9. In the final step, we move one pixel right to scan the entire image. This leads
us to figure 3.18:

Figure 3.18: Step 9

76 Hands-on TinyML

Now, let us try to understand the impact of convolution on the image. Recall our
input grayscale image in figure 3.8. it should visually look like figure 3.19:

Figure 3.19: Colour map of the input matrix

Here, the pixels with zero values represent black, and the non-zero pixels are gray.
Since the non-zero values are much smaller than 255, the gray shades will be closer
to black. Now after the convolution operation, the output matrix (Refer to figure 3.18)
will look like figure 3.20:

Figure 3.20: Colour map of the output matrix after convolution

It can be seen from the preceding example that the output shape gets reduced after
the convolution operation. For an input of M × M, if we have the kernel dimension
f × f of the filter for convolution, the output dimension becomes (M–f+1) × (M-f+1).

The convolution operation in a CNN is primarily responsible for simple image
processing tasks like edge detection. By adjusting the weights of the filters, we can
determine various horizontal or vertical edges in an image. A deep CNN can have
multiple convolutional layers along with multiple filters at each level. The first few

Gearing with Deep Learning 77

layers are typically responsible for simple edge detection. The deeper layers extract
more complex patterns specific to the application, like the extraction of human faces,
locating whiskers of a cat, and so on, which are later used as discriminating features
for making a classification. Remember, the kernel values are the trainable parameters
in a CNN. We start with some random numbers as initial values and learn them on
the training dataset.

Zero padding

In the previous example, we have seen that the convolution is done by scanning
each pixel of the input image by placing the filter and shifting it in order to scan the
entire image. However, not all pixels are scanned with equal intensity. It is evident
that the pixels located around the center of the image are scanned for several times
during shifting of the filter, whereas the pixels at the corners of the image are scanned
only once. Suppose we are going to implement an object classification task. Now, if
our target object is located at one of the corners that region will be scanned lesser
during convolution. There is a popular technique in CNN where we add pixels with
zero values around the original input image to increase its dimensionality. This is
called zero padding, which ensures that all pixels in the original image are scanned
more than once. It also ensures that the dimension of the output matrix remains
identical to the original input even after convolution. In the previous example, if we
apply p number of pixels at all sides of the image for zero padding, the new output
dimension will be (M+2p–f+1 ×(M+2p–f+1). If we wish to keep the output dimension
identical to the input, the value of p will be p = (f–1)/2.

Strided convolution

In the previous example of convolution, we have shifted the filter by one pixel
at every step in a horizontal and vertical direction. Hence, the stride length is 1.
However, the stride length can be more than 1. If we select the stride length as s, the
output dimension becomes [(M+2p-f)/s+1]x[(M+2p-f)/s+1]. Strided convolution can
be used to reduce the computational load on high-resolution images.

In the preceding examples, we have not considered the number of channels. We have
assumed a single filter having a kernel dimension of f × f for convolution. There can
be multiple filters as well. In the previous example, if the input image has a single
channel (that is, input dimension M × M × 1), and we use k filters for convolution
with zero padding and stride, the output dimension becomes [(M+2p–f)/s+1] ×
[(M+2p–f)/s+1] × k.

78 Hands-on TinyML

Once the convolution operation is done, the output matrix is converted to a non-
linear transformation (mapping) by applying to an activation function. The ReLU
activation function is commonly used in CNN.

Pooling layer
The pooling layer performs a down-sample operation for dimensionality reduction
of the input. This is particularly important to reduce the computational load when
we work on high-resolution image data. Pooling is applied to the output of the
convolutional layers by sliding a rectangular filter of some size and calculating the
maximum or average of the region of the input. Max-pooling and average-pooling
operations are commonly used in CNN. In max-pooling, the pooling filter scans the
input, and the maximum value corresponding to the scanned area is cropped as the
representative value of that region. Similarly, in average pooling, the average value
of the scanned area is marked as a representative value of the scanned area.

Suppose we have 6 × 6 dimensional input data shown as follows, where we apply
pooling using a 2 × 2 filter. The corresponding outputs for max-pooling and average-
pooling are shown as follows. The color-coding is used to show the scanned area in
the input by the 2 × 2 pooling window and the corresponding pooled values in the
output. The output dimension becomes 3 x 3.
This can be seen in figures 3.21 and 3.22:

Figure 3.21: Example of max-pooling

Gearing with Deep Learning 79

Figure 3.22: Example of average-pooling

Fully connected layer or dense layer
A fully connected layer or a dense layer is similar to the hidden layers of a feedforward
neural network. The output of the convolutional and the pooling layers are flattened
to form a 1D vector and applied to the fully connected layer. Each input to the layer
is connected to all the nodes of the fully connected layer. There can be more than one
fully connected layer in a deep CNN architecture. The nodes are activated by non-
linear activation functions like ReLU or tanh.

Output layer
The output layer uses a sigmoid activation function for binary classification or a
softmax activation function for multi-class classification. The output function
implements a loss function like binary cross entropy (for binary classification) or
categorical cross entropy (for multi-class classification). The network is trained end-
to-end to minimize the loss function using backpropagation, by therefore learning
the parameters in different layers.

Putting them all together
Now, we have learnt about the different layers of a CNN. Let us now see how a
complete CNN looks like. Figure 3.23 shows the end-to-end architecture of a
typical CNN for image classification. The dimension of different layers and the
corresponding output dimensions are duly mentioned for a better understanding.

80 Hands-on TinyML

Figure 3.23: End-to-end architecture of a CNN

The architecture contains multiple convolution and pooling layers. The input image
has a dimension of 32 × 32 × 1. First, the input image is applied to a convolutional
layer with four filters and kernel dimension 3 × 3. The output dimension after
convolution becomes 30 × 30 × 4. The output is then passed through a pooling layer
having 2 × 2 pooling window for dimensionality reduction. Next comes a second
convolutional layer with 10 filters with a kernel dimension of 3 × 3 and an associated
pooling layer. The output dimension becomes 6 × 6 × 10. The output is flattened and
applied to a fully connected layer having 256 nodes, followed by the output layer for
predicting four output classes using a softmax function.

In a CNN, the kernels of the filters in the convolutional layers and the weight values
of the nodes in the fully connected layers are the trainable parameters. The weights
are initialized by random numbers. There are associated bias terms in all layers.
Then we apply backpropagation to update the weights and bias in different layers
in such a way that the loss function is minimized.

Neural network hyperparameters
A neural network, more specifically, a deep neural network has multi-layered
architecture. Even a simple feedforward network can have many hidden layers
in between the input and the output layer. A typical deep CNN architecture has
more than one convolutional layer with associated pooling layers to generate
a high-dimensional non-linear feature map which is applied to fully connected
layers, followed by the output layer. In general, a deeper network can learn more
detailed features than a shallower network. But, this may often cause an undesired

Gearing with Deep Learning 81

performance. It is highly possible that a very deep network having many intermediate
layers will fail on an unseen test dataset despite performing well on the training set.
This condition is called an overfit, which is a common problem one might face while
training a deep neural network.

There is a set of parameters whose values can be controlled during training to
determine the performance of a network. They are called network hyperparameters.
Hyperparameters are tuneable, and they heavily influence network performance.
A neural network can have various hyperparameters. A few of them are as follows:

Number of layers
A shallower network is easy to train. The loss function easily converges, but it may
often fail to learn the properties of the training dataset. Hence, it fails on both training
and test data. This condition is called an underfit. Similarly, a deeper network can
learn more important features, but there is always a chance of an overfit. The number
of layers is a critical hyperparameter that determines the performance of a neural
network. You may start with a shallower network and gradually add more layers to
it to check the performance improvement.

Learning rate
The learning rate during training is another important hyperparameter. It is a
factor that determines the speed at which the network weights are updated in each
iteration. While minimizing the loss function using gradient descent, it is assumed
that the loss function has at least one optimum minima value, and gradient descent
tries to reach that through iterations. However, in practice, the loss function can be a
non-monotonous function, and it can have many sub-optimum local minima points.
The learning rate can be between 0 and 1. If a very small learning rate is selected,
the network will take many iterations to minimize the loss, and the learning process
may be stuck. Similarly, if a very large learning rate is selected, the weight updates
will be so big that the loss function might never reach the local minima but converge
to suboptimal minima.

Dropout
Dropout is a popular way to ensure a large network is not overfitted. Many nodes
in a deep network are often redundant. Using dropout, we can simply remove some
nodes in each layer of a network. Which nodes have to be removed are determined
in a random manner. During training, we specify a dropout amount and the layers
where the dropout will be applied. We pass a hyperparameter called keep probability

82 Hands-on TinyML

(p) which assigns a dropping probability of 1–p to the nodes. Those nodes are
removed randomly from training. Dropout is a very efficient way to train deep
neural networks that avoid overfitting.

Regularization
This is another simple strategy of avoiding overfitting by controlling the weight
values. Two popular regularization techniques used in neural networks are L1
and L2 regularization. The L1 regularization tries to shrink the weight values to
zero, whereas the L2 regularization tries to minimize the weight values to non-zero
values. The regularization terms are added to the original loss function (J(w)) to form
a modified loss function, which is minimized during training. The corresponding
equations for L1 and L2 regularization are as follows:

In L1 regularization, the absolute values of the weight are summed up and added to
the loss function. In L2 regularization, the square value of the weights is summed up
and added with the loss function. The parameter, λ is another hyperparameter that
determines the importance of regularization in the loss function.

Choice of optimization algorithm
We have only discussed about gradient descent as the optimization algorithm
to minimize the loss function. However, there are other popular optimization
algorithms like stochastic gradient descent, RMSProp, and Adam that provides
adaptive learning rate. The choice of optimization algorithm greatly influences the
network performance.

Mini-batch size
Another important hyperparameter is the mini-batch size. While training a neural
network on a large dataset, we often break it into smaller mini-batches. In each
iteration, we compute the gradient of the loss of one mini-batch and update the
weights. We can significantly reduce the training time by breaking large datasets
into smaller min-batches.

Gearing with Deep Learning 83

Other popular hyperparameters are as follows:
• Number of epochs, that is, how many times you cover the entire dataset to

update the weights
• How the initial weight values are set
• Network activation functions, and so on

A few hyper-parameters specific to CNN are as follows:
• Number of convolutional layers
• Number of output filters in each layer
• Filter dimension for convolution
• Pooling window dimension, and so on

Conclusion
Neural networks are a set of popular machine learning algorithms that mimic
the learning of the human brain. In this chapter, we have briefly covered the key
aspects of neural networks. We have started with the concept of simple multi-
layered feedforward neural network and gradually moved on to Convolutional
Neural Network (CNN), a popular deep neural network architecture commonly
used in modern image processing and computer vision applications. CNNs and
related networks are heavily used in modern TinyML applications, and we will
also implement few of them in subsequent chapters in our TinyML projects. One
thing to remember is that deep learning architectures are large in size and often
resource-hungry. Hence, they need to be significantly optimized depending on the
capacity of the target platform, which is particularly evident in TinyML applications.
In the upcoming chapter, we will learn to use TensorFlow to create our first neural
network architecture for a real-world application. In Chapter 5, Model Optimization
Using TensorFlow, we will see how a large neural network can be compressed to run
on tiny edge devices and other smaller devices for TinyML applications.

Key facts
• Neural networks are powerful machine learning algorithms that mimic the

learning mechanism of the human brain.
• A neural network is a multi-layered feedforward architecture containing

multiple neurons or nodes that propagate processed information from input
to output.

84 Hands-on TinyML

• The activation function determines which set of neurons in a neural network
will be activated.

• Each input to a node is associated with a weight. Weights are the trainable
parameters in a neural network.

• The neural network learns its weight values during training using the
backpropagation algorithm.

• A CNN is a popular deep neural network architecture commonly used in
image processing and computer vision applications.

• The core layers in a CNN are the convolutional layer, pooling layer, fully
connected layer, and output layer.

• The convolution filters are responsible for extracting the relevant patterns
from the input through convolution filters without manual pre-processing.

Further reading
1. Roberts, Daniel A., ShoYaida, and Boris Hanin. The Principles of Deep Learning

Theory: An Effective Theory Approach to Understanding Neural Networks.
Cambridge University Press, 2022.

2. Weidman, Seth. Deep learning from scratch: building with Python from first
principles. O’Reilly Media, 2019.

3. Rivas, Pablo. Deep Learning for Beginners: A beginner’s guide to getting up and
running with deep learning from scratch using Python. Packt Publishing Ltd,
2020.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In the previous chapter, we briefly discussed the key aspects of Artificial Neural
Networks (ANN) with a focus on Convolutional Neural Network (CNN). In this
chapter, we will implement our first neural network architecture to solve a real-world
problem: the classification of handwritten digits on a publicly available database. We
will primarily use TensorFlow to implement the neural networks. In Chapter 2, Crash
Course on Python and TensorFlow Basics, we briefly discussed the basics of TensorFlow.
To summarize, TensorFlow is an end-to-end open-source software platform
containing libraries for implementing machine learning applications. TensorFlow
has been extremely popular in recent days in designing large and complex deep
learning architectures. In TensorFlow, when a machine learning model is defined,
it internally creates a dataflow graph comprising a series of connected nodes.
Each node represents a mathematical operation, and each connection represents a
multi-dimensional array, also called as tensor. Although TensorFlow 2 allows eager
execution, the graph execution mode has made it faster, flexible, and robust. You can
easily execute a TensorFlow 2 program in graph mode. In graph mode, a model can
be restored without the original Python code and can even be deployed into a device
without the Python environment.

Chapter 4
Experiencing

TensorFlow

86 Hands-on TinyML

One of the biggest benefits of using TensorFlow is the level of abstraction. It takes care
of the major details of most of the underlying algorithms in a machine learning or a
deep learning application, for example, backpropagation. Hence, writing programs
in TensorFlow is super easy as you mostly need to focus on your application logic.
TensorFlow applications can run on almost any target environment, such as local
desktops, remote servers running Windows, Linux, macOS X, smartphone devices
running Android and iOS, or Linux-based single board computers. TensorFlow
contains additional libraries to convert a machine learning model into C++ equivalent
libraries to run on selected microcontrollers. Hence, you can use TensorFlow to
create your TinyML applications. Throughout this book, we will primarily use Keras
to implement the machine learning models. Keras is a high-level set of Python APIs
in TensorFlow, which is popularly used in the rapid prototyping of various neural
network models. Fortunately, both TensorFlow and Keras are readily available in
Colab. So, you can easily start writing your program in Colab without installing any
extra libraries. In this chapter, we will primarily focus on creating end-to-end neural
network models using TensorFlow. The later chapters will focus on optimizing the
neural networks to create deployable TinyML applications.

Structure
In this chapter, we will discuss the following topics:

• Keras and TensorFlow
• Classification of handwritten digits using a feedforward neural network
 o Data processing
 o Model implementation
• Implementation of a Convolutional Neural Network
• Evaluation metrics in the classification model

Objectives
The objective of this chapter is to have experience the power of TensorFlow in
implementing neural network models. In Chapter 2, Crash Course on Python and
TensorFlow Basics, we created a simple linear regression model using TensorFlow.
In this chapter, we will learn how TensorFlow can be used to create large neural
network applications. Remember, we implemented all the necessary functions for
linear regression in Chapter 2, Crash Course on Python and TensorFlow Basics. However,

Experiencing TensorFlow 87

a major advantage of TensorFlow is the availability of various functionalities to create
machine learning models. In this chapter, we will primarily use the TensorFlow
inbuilt functions to implement all the major building blocks of the neural networks.
For this, we will use Keras, a specially designed set of TensorFlow APIs for quick
implementation of neural network models in Python. This chapter can be broadly
divided into two subparts. We will first implement a simple feedforward artificial
neural network comprising two dense layers for the classification of handwritten
numerical digits on a freely available public database, the MNIST database. Later,
we will implement our first CNN model that yields an improved classification
performance on the same dataset. We will also briefly talk about some metrics used
for the performance evaluation of machine learning algorithms.

Keras and TensorFlow
Keras is an open-source high-level neural network library written in Python, which
runs on top of TensorFlow. Keras offers simple, flexible, and powerful APIs for
implementing neural network applications. It was primarily developed for rapid
experimentation and prototype designing. With Keras, you can create your deep
learning architecture using a few lines of code. Keras provides a high level of
abstraction for developing and shipping of machine learning applications. You can
create almost all popular deep learning architectures by calling the APIs without
even implementing the complex underlying functionalities. Keras comes as a high-
level set of APIs directly integrated with TensorFlow 2, which can be directly called
from TensorFlow 2. It enables you to exploit the full advantage of the scalability and
cross-platform capabilities of TensorFlow. Hence, Keras can be run on GPUs, TPUs,
and also on mobile platforms.

The Keras architecture has three main categories:
1. models
2. layers
3. core modules

Every neural network is a Keras model, and every model is a composition of Keras
layers (such as the convolutional layer, pooling layer, dense layer, and so on). The
core modules contain different activation functions, loss functions, regularization
parameters, and so on. In figure 4.1, a simple ANN structure is illustrated, which we
will implement in Keras:

88 Hands-on TinyML

Figure 4.1: Sample ANN structure

In the preceding figure, we show a simple multi-layered feedforward ANN structure
for a three-class classification problem. The input has a feature dimension of 784.
Next comes two fully connected hidden layers with 512 and 256 number of nodes,
respectively, having ReLU activation function. Finally, we have the fully connected
output layer with three nodes for prediction using a softmax activation function.
Most of the neural networks covered in this book will fall under the Sequential
model. It is a linear composition of Keras layers. Different Keras layers can be
stacked in a Sequential model using the add() function to define the architecture.

As mentioned earlier, Keras APIs are directly integrated with TensorFlow 2. Since
TensorFlow 2 is preinstalled in Colab, you do not need to install them separately. If
you want to install TensorFlow on your system for offline code execution, you may
refer to the official website of TensorFlow1.

Now, let us implement the ANN structure shown in figure 4.1 as a Keras Sequential
model.

Let us open a new notebook in Colab and save it a s a new project. We will start
writing our program by importing the necessary APIs and then defining a Sequential
model. Refer to the following code:

>>from tensorflow.keras.models import Sequential

 model = Sequential()

1 https://www.tensorflow.org

Experiencing TensorFlow 89

Next, we will add three dense layers. In order to add a layer to a sequential model,
we need to call model.add() and provide the details of that layer. In the first layer
of any Keras model, we must provide the shape of the input data. Please see the
following code:

>>from tensorflow.keras.layers import Dense

 model.add(Dense(512, activation = 'relu', input_shape = (784,)))

 model.add(Dense(256, activation = 'relu'))

 model.add(Dense(3, activation = 'softmax'))

The ANN comprises three fully connected dense layers, including two hidden
layers, and the output layer. In each dense layer, we have mentioned the number of
nodes and the activation function. We have used the ReLU activation in the hidden
layers and softmax in the output layer. Once the model is defined, we can see a
model overview by calling model.summary(). Execute the following command in a
new cell.

>>model.summary()

It will print the following output in figure 4.2, which states our model is a sequential
model. It displays the tensor shape at the end of different layers and also the number
of trainable parameters in the network.

Figure 4.2: Output of model.summary() in Keras

Once our model is defined, we need to configure the learning process by setting
the training parameters, for example, the loss function. Then we can fit the model
on training data to initiate the learning process that will give us the trained model.
Subsequently, the model can be evaluated on test data. We will learn more about
these steps once we implement a real model.

90 Hands-on TinyML

Classification of handwritten digits using a
feedforward neural network
In the previous section, we have learnt how to define a simple neural network
in TensorFlow using Keras APIs. Now, we will develop our first neural network
application to solve a real-world application of classifying handwritten numerical
digits. The first thing you require in order to implement a machine learning model
is an appropriate dataset. For this application, we will use a publicly available
database, the MNIST database.

MNIST is a popular entry-level database for machine learning beginners and
researchers for doing experiments. It contains labelled images of handwritten digits.
The images in the database are of relatively smaller dimensions, and hence, require
minimum pre-processing. Because of smaller dimensions, it also takes comparatively
lesser time to train and evaluate machine learning models, making the dataset
ideal for performing various experiments. The images in the MNIST database are
divided into training and test sets. The training set has 60,000 image examples,
and the test set has 10,000 images of handwritten digits. All the images have been
size-normalized and centered in fixed-size images. Hence, you can directly work
on them without much pre-processing. The images are available in grayscale with
dimensions of 28 × 28. The images are handwritten numerical digits from 0 to 9,
which are fully annotated. Hence, there are ten different class labels in the database.
MNIST is readily available in Keras. Hence, you can easily load the database with a
single function call.

Go back to your Colab notebook. We will load the database using Keras using the
following lines of code:

>>from tensorflow.keras.datasets import mnist

 #load the dataset

 (X_train, y_train), (X_test, y_test) = mnist.load_data()

On executing the preceding code snippet, the MNIST database will be loaded
into your workspace. The variables X_train and X_test will store the images
corresponding to the training and test set, and y_train and y_test store the values
corresponding to class labels. Now, let us check about the shape of the variables.
Execute the following code in a cell:

>>print(' shape of training data ' ,X_train.shape)

 print('shape of training labels ',y_train.shape)

Experiencing TensorFlow 91

 print('shape of training data ',X_test.shape)

 print('shape of training labels ',y_test.shape)

 print('type of X_train ',type(X_train))

 print('type of y_train ',type(y_train))

The code segment will show the shape of different data variables in the training and
test set along with the datatype, as shown in figure 4.3:

Figure 4.3: Details of the MNIST database

It can be seen that the images in the MNIST database are stored as NumPy arrays.
Each image sample in the training and test set has a dimension of 28 × 28 pixels of
8-bit unsigned integers (uint8). Hence, each pixel value ranges between 0 and 255.
The variables y_train and y_test contain a single-valued number between 0 and 9
corresponding to the class labels of the images.

Now, let us plot a few sample images from the training set for a better understanding
of the database. The following code snippet randomly selects nine images from the
training set and plots them in grayscale.

>>import numpy as np

 import matplotlib.pyplot as plt

 from numpy import random

 plt.rcParams['figure.figsize'] = (4,4)

 for i in range(9):

 plt.subplot(3,3,i+1)

 num = random.randint(0, len(X_train))

 plt.imshow(X_train[num], cmap='gray')

 plt.title('Class {}'.format(y_train[num]))

 plt.tight_layout()

92 Hands-on TinyML

The output of the preceding code in one run is shown in figure 4.4. Since the samples
are drawn at random, you can expect different sets of output each time you execute
the code. Apart from plotting the sample images, the corresponding class labels
are also shown. The digits are located centrally in the images in white with a dark
background. An important thing to note is there can be multiple different drawing
patterns for a particular digit in the database. See the two examples of the digit 2
in figure 4.4. They look completely different. This is absolutely normal as human
handwriting widely varies for different persons. It is always a good idea to introduce
diversity in the training set in order to create a generalized machine learning model
so that it does not fail on unseen test images. When you create your own dataset, it
is always recommended to have some levels of variation in the training set so that it
covers the full range of the data belonging to a particular class label.

Figure 4.4: Plotting random samples from MNIST

Now, let us create our first neural network to create a classifier on MNIST. As
mentioned earlier, we will first create a simple feedforward ANN classifier and later
design a CNN structure.

Data processing
As discussed in Chapter 3, Gearing with Deep Learning, an ANN-based on dense layers,
takes 1D data vectors as input. Hence, the pixel values need to be reshaped from a 28
× 28 matrix to a vector of 28 × 28 = 784 values. Each point in the vector represents a
feature, which goes to the network as the input. We will do one basic pre-processing
on the input images in both training and test set. The pixel values will be scaled

.

Experiencing TensorFlow 93

down between 0 and 1. This is done by dividing the pixel values by 255. The process
is called data normalization, which helps in reducing the scales of the input feature
values to ensure a better and faster training. After the pre-processing, the input
images will be converted into 32-bit floating point numbers from 8-bit unsigned
integers. The pre-processing code is shown as follows:

>>#reshape the training and test data into 1D tensors

 X_train = X_train.reshape(60000, 784)

 X_test = X_test.reshape(10000, 784)

 # convert into 32-bit floating point numbers

 X_train = X_train.astype('float32')

 X_test = X_test.astype('float32')

 X_train /= 255 # normalize the input

 X_test /= 255

Since we have ten different target classes to predict, the output layer of the ANN will
have ten nodes. We also need to modify the class labels from their integer values into
one-hot encoded vector in order to compute the cross entropy loss during training.
Keras has an inbuilt function, to_categorical(), that converts the class labels into
the equivalent one-hot vectors. Refer to the following code:

>>from tensorflow.keras.utils import to_categorical

 num_class = 10

 print('label of 100th instance in training data: ', y_train[100])

 print('label of 500th instance in test data: ', y_test[500])

 y_train = to_categorical(y_train, num_class)

 y_test = to_categorical(y_test, num_class)

 print('label of 100th instance in training data one hot encoded: ',y_
train[100])

 print('label of 500th instance in test data one hot encoded: ', y_
test[500])

94 Hands-on TinyML

The output of the preceding code segment is shown in figure 4.5. In the code example,
we have taken the 100th sample from the training data, which has a class label of 5,
and the 500th sample from the test data, which has a class label of 3, and shown how
the output looks after one-hot encoding.

Note: One-hot encoding can be applied on string class labels as well, for example,
an image dataset containing labelled images for cats, dogs, and horses. We will
explore that in Chapter 6, Deploying My First TinyML Application.

Figure 4.5: One hot encoding of the class labels

Model implementation
Once we are done with loading and pre-processing of the data, we can define our
neural network architecture.

A Keras model has the following four stages:
1. Defining the model: We define a Sequential model and add the necessary

layers.
2. Compiling the model: We configure the model for training by defining the

loss function to be minimized, the optimizer that minimizes the loss function,
and a performance metric to internally evaluate the performance.

3. Fitting the model: Here, we fit the model on the actual training data for a
given number of epochs to update the training parameters. We will get the
model at the end of training.

4. Evaluation: Once you have the model, you can evaluate on unseen test data.

We will now implement a simple feedforward ANN. Our ANN has a single input
layer and two hidden dense layers, followed by the output layer for classification.
The two hidden layers have 512 and 128 nodes, respectively. The ReLU activation
function is used in the hidden layers. The output layer has 10 nodes for classifying
10 different classes using a softmax function. As mentioned before, we will define
a Sequential model and add all the layers. Remember, in the first layer, we must
provide the dimension of the input data. In our case, the input has 28 ×28 = 784
values. The following code:

>>from tensorflow.keras.models import Sequential

Experiencing TensorFlow 95

 from tensorflow.keras.layers import Dense

 model = Sequential()

 model.add(Dense(512, activation = 'relu', input_shape = (784,)))

 model.add(Dense(128, activation = 'relu'))

 model.add(Dense(num_class, activation = 'softmax'))

Execute model.summary() to get an overview of the model, the output shape at each
layer, and the number of trainable parameters. Refer to figure 4.6:

Figure 4.6: Summary of the ANN model for the classification of handwritten digits

Now, we can train our model. We will first configure our model for training by
specifying the loss function and the optimizer, and the evaluation metric. Since we
are dealing with a multi-class classifier problem, we will use a loss function readily
available in Keras, the categorical cross entropy loss function. We will use Adam
as an optimizer to minimize the loss, which is a very popular choice in deep neural
networks owing to its adaptive learning rate. We will use the default learning
rate. Finally, we provide classification accuracy as a metric to judge our model
performance during training. Now, we will execute the function model.ccompile()
to configure the process. Refer to the following code:

>>model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

Now, we are ready to train our model. We will call the function model.fit(). The
training data and the labels are supplied as input parameters. We also specify two
more hyperparameters, the mini-batch size, and the number of epochs for training.
The mini-batch size specifies how much of the data is used to compute the loss
function and update the weights in one iteration. We specify a mini-batch size of

96 Hands-on TinyML

128, that is, the weights will be updated once on every chunk of 128 image samples
randomly selected from the training data. In a complete epoch, we completely
traverse the entire training data once which is divided into into multiple mini-
batches. We specify 10 epochs for training. Now, let us train our model by executing
the following code:

>>model.fit(X_train, y_train, batch_size=128, epochs=10, verbose=1)

The output is shown in figure 4.7:

Figure 4.7: Training of the ANN model

Setting the parameter verbose=1, we will allow to print the necessary information
during training in the output console. As shown, it prints the execution time, the
cross entropy loss value, and the overall classification accuracy on the training data
at the end of every epoch. The classification accuracy measures the fraction of data
that are correctly predicted by the classifier. Suppose you have 100 instances for
prediction in your dataset. Your classifier has correctly detected 98 out of them. In
that case, the classification accuracy will be 98%. A higher accuracy indicates a more
accurate model. It can be observed that the cross entropy loss tends to decrease with
the increase in epochs, and as a result, the classification accuracy improves. This is
the intended scenario, as with every epoch, we are getting closer to a local minima
of the loss function. At the end of 10 epochs, we get a classification accuracy of 99%
on the training data.

We have a model that gives around 99% classification accuracy on the training data.
Next, we need to see how the model performs on the unseen test data. We will call
the function model.evaluate(). It takes two NumPy arrays as input, the image

Experiencing TensorFlow 97

data in the test set, and the corresponding labels. It returns an array having two
elements. The first element is the loss on the test data, and the second element is the
classification accuracy. Refer to the following code, for which the output is shown
in figure 4.8:

>>score = model.evaluate(X_test, y_test)

 print('loss on test data: ', score[0])

 print('accuracy on test data:', score[1])

Figure 4.8: Prediction of test data

It can be observed that with a simple ANN, we can achieve a classification accuracy
of around 98% on the MNIST test set. Please note in this example, we have trained
our ANN for only 10 epochs. Since we worked on a fairly simple dataset, the loss
function got minimized in 10 epochs. In a practical scenario, you may require to
train a model for several hundreds of epochs to eventually minimize the loss.

As an exercise, you can change various hyperparameters of the ANN, such as
the number of hidden layers, number of nodes in the layers, number of epochs,
mini-batch size, learning rate, and so on, and check the impact on the classification
performance.

Implementation of a Convolutional Neural
Network
In the previous section, we have designed a simple feedforward neural network
in TensorFlow using Keras. We have trained the model on the MNIST database
for handwritten digit classification. In this section, we will design a slightly more
complex neural network, a Convolutional Neural network or CNN, to solve the
same problem. In Chapter 3, Gearing with Deep Learning, we have briefly discussed
about the basic architecture of a CNN. It typically has five layers.

1. Input layer
2. Convolutional layer
3. Pooling layer
4. Fully connected layer
5. Output layer

98 Hands-on TinyML

Similar to the feedforward neural network, we will first define our CNN architecture
and then configure it for training. One big advantage of CNN over a simple ANN
is that a CNN can automatically extract relevant features from the image. Hence,
the input images can be directly applied to a CNN without reshaping them into 1D
vectors.

The architecture of the CNN we are going to implement for handwritten digit
classification is shown in figure 4.9. The architecture has the following layers:

Figure 4.9: CNN architecture for classification of handwritten digits

The different layers are as follows:
1. Input layer: Input dimension of 28 ×28 ×1 for grayscale images
2. Convolutional layer: Kernel dimension of 3 ×3, number of output channels

= 32, activation = ReLU
3. Maxpool layer: 2 ×2 pooling window
4. Convolutional layer: Kernel dimension of 3 ×3, number of output channels

= 64, activation = ReLU
5. Maxpool layer: 2 ×2 pooling window
6. Flatten layer: To convert into a 1D vector
7. Dense layer: 10 nodes with a softmax activation function for prediction

Experiencing TensorFlow 99

Keras has inbuilt APIs for almost all the layers that form the basic building blocks
of a CNN. Hence, you hardly need to write any code to implement the fundamental
layers of a CNN.

We will now implement the model. As mentioned earlier, the model will be trained
and evaluated on the MNIST database. In a simple feedforward ANN comprising
only dense layers, we need to reshape the input images into 1D tensors. Thanks
to the convolution filters of a CNN, we can automatically extract relevant features
from the input images. Hence, we do not to restructure the input images into 1D
data. Since the images in the MNIST database are in grayscale, we need to specify
the input channel as 1. We perform a reshaping operation on the 2D NumPy array to
represent them in the format of image width × image height × number of input channels.
This is the required dimension of the input image to apply to a CNN structure.
In our case, the dimension of the images will be 28 × 28 × 1. The pixel values are
normalized between 0 and 1. Similarly, the class labels are also converted into one
hot encoded vectors.

>>#load the dataset

 (X_train, y_train), (X_test, y_test) = mnist.load_data()

 X_train = X_train.astype('float32') # change integers to 32-bit
floating point numbers

 X_test = X_test.astype('float32')

 X_train /= 255 # normalize the input

 X_test /= 255

 X_train = X_train.reshape(-1, X_train.shape[1], X_train.shape[2], 1)

 X_test = X_test.reshape(-1, X_test.shape[1], X_test.shape[2], 1)

 y_train = to_categorical(y_train, num_class)

 y_test = to_categorical(y_test, num_class)

Now, we can define CNN architecture. As mentioned earlier, most of the building
blocks are readily available in Keras. We will briefly discuss about few of the
functional layers commonly used to implement a CNN.

100 Hands-on TinyML

Conv2D: The Conv2D layer performs 2D convolution operations on images.
Although 2D convolution is the popular operation, Keras supports 1D and 3D
convolution operations too. Conv2D takes a 2D tensor (for example, image) as
input, performs convolution operation based on the kernel dimension provided in
the input argument, and returns the output tensor. When Conv2D is used as the first
layer in the model, you need to specify the dimension of the input data as an extra
argument. For 2D convolution, the dimension of the input is a tuple in the form of
(image width, image height, number of channels); for example, in our example, the
input shape is (28,28,1). A few other input arguments for Conv2D are as follows:

• filters: Number of output filters, a whole integer value
• kernel_size: A tuple specifying the width and height of the kernel for

convolution
• strides: A tuple that specifies the stride length, default is (1,1)
• padding: “valid” if zero padding is not used or “same” if zero padding is

used, default is “valid”
• activation: specifies the activation function
• use_bias: True and False, default is True
• kernel_initializer: specifies how the kernel values are initialized; the default

is “glorot_uniform”
• bias_initializer: specifies how the bias terms are initialized; the default is

“zeros”

In most cases, we only need to specify a few of the input parameters, such as the
“filters,” “kernel_size,” “padding,” and “activation”, and use the default values for the
rest.

MaxPooling2D: It performs 2D maxpool operation on the input. A few of its input
arguments are as follows:

• pool_size: A tuple to specify the pool window size
• strides: Specifies the stride length for pooling; default is None
• padding: Default is “valid”

Flatten: It reshapes the input tensor to an equivalent 1D tensor so that it can be
applied to a dense layer. For example, if the input has a dimension of (batch_size, 10,
10, 2), the output dimension after flattening will be (batch_size, 200).

Dense: These are regular, fully connected layers used in neural networks. We have
already used them in the previous section. A few of the input arguments are as
follows:

Experiencing TensorFlow 101

• units: Specifies the number of nodes
• activation: The activation function
• use_biase: Default is True
• kernel_initializer: Default is “glorot_uniform”
• bias_initializer: Default is “zeros”

Now let us define our CNN. We first import the necessary layers in Keras. Then
we define a Sequential model and add all the necessary layers. As shown in figure
4.9, the CNN we are going to define has a pair of Conv2D layers with associated
Maxpooling2D layers. The kernel dimension and the number of output channels are
shown in the figure. We will use the ReLU activation function in the Conv2D layers.
The output of the final convolutional layer is reshaped using the Flatten layer. In
order to mitigate the scope of overfit, we apply 50% of dropout. Then comes the final
dense layer having 10 nodes along with a softmax activation function for prediction.
The complete code to define the network is shown as follows:

>>from tensorflow.keras.models import Sequential

 from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten,
Dropout, Dense

 model = Sequential()

 model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_
shape = (28,28,1)))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Flatten())

 model.add(Dropout(0.5))

 model.add(Dense(num_class, activation='softmax'))

Similar to the previous example, we have provided the shape of the input images
as an argument in the first convolutional layer. Now, let us have a close look at the
structure of the model and its parameters. As mentioned, we can get an overview
of the model by executing the command model.summary(). The output is shown in
figure 4.10:

102 Hands-on TinyML

Figure 4.10: Summary of the CNN for classifying handwritten digits

Carefully look at the shape of the tensor at the output of different layers. Since
the default padding in the Conv2D() is valid, the tensor dimension shrinks after
each convolution operation. If the input tensor has a dimension of W×H and the
corresponding kernel dimension is k×k, the output dimension becomes (W-k+1) ×(H–
k+1) after convolution. We increase the number of filters in the second convolutional
layer to extract more detailed features. The subsequent pooling operation is
performed to reduce the data dimension. The output is flattened into a single vector
and applied to the dense layer for classification.

Now, let us compile the model. We will keep the same set of parameters we used in
our earlier ANN.

>>model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

Now, we can train our CNN. We will call model.fit() and pass the training data as
input arguments. We will keep the number of epochs and batch-size similar to what
we have used in the earlier example. Execute the following code:

>>history = model.fit(X_train, y_train, batch_size=128, epochs=10)

Experiencing TensorFlow 103

Refer to figure 4.11 for the output:

Figure 4.11: Training of the CNN

On executing the preceding code, we can see how the network behaves on the
training data with increasing epochs. Similar to the previous example, the loss
function decreases, and the classification accuracy increases. We again get around
99% classification accuracy on the training data at the end of 10 epochs. The variable
history stores all the information related to the loss value and accuracy at different
epochs. We can plot the training history using Matplotlib library. See the following
code for plotting the training performance of the model:

>>import matplotlib.pyplot as plt

 plt.subplot(2,1,1)

 plt.plot(history.history['loss'], '*-')

 plt.xlabel('epochs')

 plt.ylabel('loss')

 plt.subplot(2,1,2)

 plt.plot(history.history['accuracy'],'*-')

 plt.xlabel('epochs')

 plt.ylabel('accuracy')

104 Hands-on TinyML

The code output is shown in figure 4.12:

Figure 4.12: Plotting the loss and accuracy versus epochs

Finally, let us evaluate our model on the test data by executing the following code:

>>score = model.evaluate(X_test, y_test)

 print('loss on test data: ', score[0])

 print('accuracy on test data:', score[1])

Refer to figure 4.13 for the output:

Figure 4.13: Evaluation of test data

Using CNN, we get around 99% classification accuracy on the test set. It can be
recalled that earlier, we got 98% classification accuracy using the feedforward ANN
network. Hence, we conclude that the CNN marginally outperforms the ANN on
the MNIST database. You are strongly encouraged to see how the CNN performance
by tweaking various network hyperparameters. You may add more convolution and
pooling layers to the existing CNN. You may also modify the kernel dimension and
the number of filters. We may add more dense layers or even change the dropout
rate. Apart from that, you may also modify the learning rate and mini-batch size and
may use more number of epochs for training of the network and check the model
performacne.

Experiencing TensorFlow 105

It can be observed that both the feedforward ANN and the CNN result in more
than 98% classification accuracy on the test set only after 10 epochs of training.
Remember, MNIST is a relatively simple database where the images are very small
in size. Moreover, the digits are centrally located in the images and do not have
any complex, ambiguous background. Hence, the network requires a relatively less
number of epochs for training. In a practical scenario, it may take several hundreds
of epochs in order to minimize the loss function.

Finally, let us go back and check the model summary for the ANN and the CNN
in figures 4.6 and 4.10, respectively. Our ANN model resulted in a total of 468,874
trainable parameters, whereas the CNN generates only 34,826 trainable parameters,
which is much lesser than the ANN. A Keras model can be saved by using the model.
save('filename') function. In TensorFlow, we save the model files in H5 file format.
It can be seen that the size of the ANN model is more than 5.5 MB in the computer
hard disk, whereas the size of the CNN model is around 459 KB, which is more than
10× smaller than the ANN model. Hence, we can conclude that with CNN, we get a
much smaller yet more accurate model than an ANN.

Evaluation metrics in classification models
In this example, we have measured classification accuracy as a metric for evaluating
the performance of a neural network classifier. However, classification accuracy
cannot always properly justify the true performance of a classifier model. Let us
take a different example. Suppose we have designed a classifier for detecting a rare
type of lung cancer from chest X-ray images. Suppose we have tested our model
on a skewed population of 200 people, where only five people have the disease,
and others are normal. Now, if our classifier predicts all test subjects as normal, it
will correctly predict all 195 normal subjects, despite not detecting a single diseased

case. So, we will get a classification accuracy : × 100 = 97.5%. It sounds very
good in terms of the accuracy value. But in real life, it is a poor classifier because it
predicts everything as a single class label. Hence, classification accuracy cannot be
an optimum metric for this kind of problem. In this section, we will briefly talk about
certain metrics popularly used in evaluating the performance of a machine learning
model.

• Confusion matrix
 Confusion matrix shows the classification performance of a model in tabular

format in terms of four parameters, True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). Suppose you have designed a
binary classifier for identifying images of cats. Your classifier gives an output

106 Hands-on TinyML

1 if it predicts a cat in the image and returns 0 if no cat is detected. True
positive measures how many 1s predicted by the classifier are correct based
on their actual labels. Similarly, true negative measures how many predicted
0s (that is, no cat) are actually correct. False positive measures how many
predicted 1s are actually 0; that is, the classifier predicted that the image
contains a cat, but actually, there is no cat. Finally, false negative measures
how many predicted 0s are actually 1; that is, the classifier has predicted that
the image does not contain any cat, but there are actually cats in the images.

 For a binary classifier, the confusion matrix is shown in figure 4.14:

Figure 4.14: Confusion matrix for a binary classifier

 Confusion matrix can also be derived for both binary and multi-class
classifiers. For multi-class classifiers, the parameters TP, TN, FP, and FN are
measured in one-vs-all strategy. Where we spilt the problem into multiple
binary classification problems per class.

• Classification report
 With the confusion matrix, we can define a number of metrics to evaluate the

classification performance.
 Recall or Sensitivity: It measures how many positive samples have been

correctly predicted by the classifier. It is given by the following equation:

 Precision: It measures out of all predicted positive samples by the classifier
how many are actually correct. It is given by the following:

 Specificity: It measures the fraction of negative samples that are correctly
predicted.

Experiencing TensorFlow 107

 Classification accuracy: It is a measure of the fraction of all correctly predicted
samples by the classifier.

 F1 score: This is a weighted average of precision and recall. It is calculated as
the harmonic mean of precision and recall. Refer to the following equation:

F1-score takes into account both precision and recall in a single metric. Hence, it
is widely considered as a better performance metric compared to classification
accuracy, particularly to evaluate on imbalanced datasets.

Conclusion
In this chapter, we have developed our first neural network application using
TensorFlow for the classification of handwritten digits. We have particularly
used the Keras APIs integrated with TensorFlow, which gives us quick interfaces
to implement large deep learning architectures from scratch with a high level of
abstraction. We have initially implemented a simple feedforward ANN and then a
a CNN model using the publicly available MNIST database. It can be observed that
the CNN offers a smaller yet more accurate model compared to the ANN. Now the
question arises, is the CNN model small enough to run on tiny microcontrollers?
The simple answer is No. In this chapter, we have implemented a fairly simple CNN
with only two convolutional layers. Although it worked pretty well in our case
because of the simplicity of the database, it will most certainly not work on complex
practical datasets where the images are large in size and are noisy in general.

In practice, a CNN architecture may have many layers which may generate several
thousands of trainable parameters. Hence, the model size will significantly increase.
Such a model might not be suitable for TinyML applications. You need to compress
the original model before deploying it on a smaller target device. However, model
compression often causes a negative impact on performance. Hence, we need to
maintain a trade-off between model size and accuracy while compressing a model.
This is called model optimization. In the upcoming chapter, we will go one step
closer to our first TinyML application by converting a large neural network model
into a much smaller yet optimized model using TensorFlow.

108 Hands-on TinyML

Key facts
• Keras offers sets of APIs on TensorFlow for quick implementation of neural

networks in Python.
• Keras provides a high level of abstraction.
• There are four stages in a Keras model: model definition, compiling the

model, fitting on the training data, and evaluation of test data.
• MNIST is a publicly available database containing labelled images of

handwritten digits for benchmarking machine learning model.
• A CNN can outperform a traditional ANN with much lesser number of

trainable parameters.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In Chapter 4, Experiencing TensorFlow, we developed our first neural network model
for the classification of handwritten digits. TensorFlow offers readily available
Python interfaces under Keras for quick implementation of complex neural network
architectures. A neural network designed for practical applications can have several
thousands of trainable parameters, resulting in large models. We developed a
fairly simple Convolutional Neural Network (CNN) in the previous chapter that
had only two convolution layers. Moreover, the network was intended to process
very small images having dimensions of 28 x 28 pixels. Even then, the network
had around 35K trainable parameters, and it required 459 kilobytes of memory
space to store the model. In a real-world scenario, you may require to design more
complex networks that may have millions of trainable parameters. Such a model
may require several megabytes of memory space. Large deep learning algorithms
typically run on powerful desktops or data centers or are hosted in the cloud. In
that case, we typically do not bother about the hardware resource like memory
space or computation capacity, or power consumption to run those large deep
learning models. However, the scenario is completely different in TinyML. Here, our
target platforms are smaller edge devices and microcontrollers, which are severely
resource constrained. For example, a typical microcontroller has only 256 kilobytes

Chapter 5
Model Optimization

Using TensorFlow

110 Hands-on TinyML

of computational memory and only 64 megahertz of CPU speed. Hence, a standard
deep neural network cannot be directly deployed on a microcontroller to implement
a TinyML application.

In the previous chapters, we learned the basic concepts of TensorFlow to create
machine learning models. TensorFlow also offers a set of libraries for compressing
and optimizing large machine learning models. TensorFlow Lite is a specially
designed open-source library for deploying machine learning and deep learning
models on smaller devices like mobile phones, microcontrollers, and other IoT
and edge devices. With TensorFlow Lite Converter, you can convert a TensorFlow
model into a compressed FlatBuffers format that is optimized for mobile and edge
devices. FlatBuffers is an efficient cross-platform serialization library for various
programming languages such as C, C++, JAVA, JavaScript, Python, and so on. It
represents hierarchical data in a flat binary buffer so that the serialized data can
be accessed directly without unpacking while providing forward/backward
compatibility. It has very efficient memory management, resulting in a faster
inference speed on the target device.

A TensorFlow Lite model is represented by .TFLITE file extension. A model
generated by the TensorFlow Lite Converter is much smaller than the corresponding
TensorFlow model and also runs much faster with a minimum performance impact.
TensorFlow Lite supports multiple platforms such as Android, iOS, and Linux-based
single board computers like Raspberry Pi and also some microcontrollers. It also
supports a number of programming languages, including C, C++, JAVA, Python, and
so on. In addition, TensorFlow offers the TensorFlow Model Optimization Toolkit,
a set of software tools that can reduce model complexity for ease of deployment and
faster execution on edge devices. For example, a 32-bit floating point model can be
quantized into a pure integer-based model, which is not only 4× smaller than the
original model but also runs much faster on the target device.

Structure
In this chapter, we will discuss the following topics:

• Experiencing TensorFlow Lite
• TensorFlow Model Optimization Toolkit
 o Quantization
 Post-training quantization
 Quantization-aware training

Model Optimization Using TensorFlow 111

 o Weight pruning
 o Weight clustering
 o Collaborative optimization

Objectives
In this chapter, we will learn different techniques about how a base TensorFlow
model can be effectively compressed in a step-by-step manner for deploying on
smaller target devices through practical coding examples. We will primarily learn to
use TensorFlow Lite and TensorFlow Model Optimization Toolkit. First, we will
create a baseline Convolutional Neural Network (CNN) model using TensorFlow,
which will be trained and evaluated on Fashion MNIST, another popular benchmark
machine learning database that contains grayscale images of different fashion
products. Next, we will convert the baseline model into a compressed TensorFlow
Lite model, that can be further converted into equivalent libraries for deploying
on various target platforms such as Android and iOS-based smartphones, Linux-
based single board computers or even microcontroller units to make inferences. We
will also explore various optimization techniques offered by TensorFlow through
TensorFlow Model Optimization Toolkit, including quantization, weight pruning,
and weight clustering. We will optimize the baseline model, and experience the
impact of different optimization techniques on both model size and classification
performance.

Experiencing TensorFlow Lite
TensorFlow Lite or TFLite, a lighter version of TensorFlow, is an open-source
framework for on-device machine learning. It enables TensorFlow models to run
on mobile, embedded, and IoT devices in a seamless manner. TFLite was developed
and open-sourced by Google. Some of its key advantages are as follows:

• TFLite converts a baseline TensorFlow machine learning model into an
efficient and portable format called FlatBuffers, which is an efficient
serialization cross-platform library.

• Flatbuffers are easily accessible, extremely memory efficient, faster, flexible,
and generate tiny code with small headers, which is easy to integrate.

• TFLite models have a decreased inference time. This implies a reduced
latency, which is essential for real-time on-device machine learning.

• TFLite is extremely user-friendly. It supports various hardware platforms

112 Hands-on TinyML

and programming languages.

However, it is important to note that TFLite models are particularly designed for
model inferencing on tiny edge devices. Although you can rarely train a model on a
mobile smartphone or a Raspberry Pi, on-device model training is very difficult for
microcontrollers. Training of a machine learning model is far more computationally
expensive and is typically done on a desktop computer or a cloud server. Moreover,
in most of the cases, you do not need to retrain your model very often. Hence, offline
training is the preferable approach. The main objective of TensorFlow Lite is make
real-time inferences on smaller edge devices, which may run 24x7.

Now, let us explore how to create a TFLite model from a base TensorFlow model
through a practical example. In Chapter 4, Experiencing TensorFlow, we developed
our first CNN model for classifying handwritten digits. In this chapter, we will
create another similar CNN architecture, although for a different application. The
CNN we are going to design will classify images of various fashion products.
For this application, we will use the Fashion MNIST database. Fashion MNIST is
another popular open-access machine learning database containing labelled images
for various fashion products. The database is quite similar with MNIST in terms
of image size and structure of training and test splits. It has 60,000 training and
10,000 test examples. Each example is a 28 × 28 grayscale image. The training and
test examples are associated with a numerical number as labels corresponding to the
following product code:

•	 0: T-shirt/top
•	 1: Trouser
•	 2: Pullover
•	 3: Dress
•	 4: Coat
•	 5: Sandal
•	 6: Shirt
•	 7: Sneaker
•	 8: Bag
•	 9: Ankle boot

Now, we will design a base CNN model in TensorFlow to classify different fashion

Model Optimization Using TensorFlow 113

products on Fashion MNIST. Create a new Colab notebook and save it as a project.
Connect to a Python runtime.

We will first import the necessary libraries:

>>import numpy as np

 from numpy import random

 import matplotlib.pyplot as plt

 import tensorflow as tf

 from tensorflow.keras.datasets import fashion_mnist

 from tensorflow.keras.models import Sequential

 from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten,
Dropout, Dense

 from tensorflow.keras.utils import to_categorical

 from tensorflow.keras.optimizers import Adam

Next, we will load the database in our work directory. Similar to MNIST, the Fashion-
MNIST database is also readily available with Keras. We can import it easily with the
following line of code:

>>(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()

It will load the training and the test data and their labels. Now, let us plot a few
random samples from the database for quick visualization. Refer to the following
code. It will show the images and the corresponding labels.

>>plt.rcParams['figure.figsize'] = (5,5)

 for i in range(9):

 plt.subplot(3,3,i+1)

 num = random.randint(0, len(X_train))

 plt.imshow(X_train[num], cmap='gray')

114 Hands-on TinyML

 plt.title('Class {}'.format(y_train[num]))

 plt.tight_layout()

The code output at one execution is shown in figure 5.1:

Figure 5.1: Sample Images from the Fashion-MNIST database

Similar to Chapter 4, Experiencing TensorFlow, we will apply some basic pre-processing
on the images. The pixel values of the images are rescaled between 0 and 1 and the
dimension is reshaped in (width, height, 1) format. We also convert the class labels
into one hot encoded vector. Refer to the following code:

>>num_class = 10

 X_train = X_train.astype('float32') # change integers to 32-bit
floating point numbers

 X_test = X_test.astype('float32')

Model Optimization Using TensorFlow 115

 X_train /= 255 # normalize the input

 X_test /= 255

 # reshape the input as per input to CNN

 X_train = X_train.reshape(-1, X_train.shape[1], X_train.shape[2], 1)

 X_test = X_test.reshape(-1, X_test.shape[1], X_test.shape[2], 1)

 #convert the output labels to one hot vector

 y_train = to_categorical(y_train, num_class)

 y_test = to_categorical(y_test, num_class)

Now, we will define the CNN, which will be our baseline model. For this application,
we will again define a fairly simple architecture having only two convolutional layers.
The number of convolution filters used in the two convolutional layers are 32 and
64, respectively. The kernel size is taken as 3 × 3. After each convolution, a maxpool
layer is applied. The output feature map is flattened and applied to a dense layer
having 100 nodes, followed by the final dense layer with 10 nodes for prediction of
different classes using a softmax activation function. We also apply dropout before
the dense layers. As discussed in Chapter 4, Experiencing TensorFlow, we will create
a Sequential model under Keras and add the necessary layers to define our model.
Refer to the following code:

>>model = Sequential()

 model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_
shape = (28,28,1)))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Flatten())

 model.add(Dropout(0.5))

 model.add(Dense(100, activation = 'relu'))

 model.add(Dense(num_class, activation='softmax'))

You can see the model details by executing model.summary() on Colab. Refer to
figure 5.2 for an overview of the model, which has around 180,000 parameters:

116 Hands-on TinyML

Figure 5.2: Summary of the baseline CNN

Now, it is time to configure the network for training. We will define an Adam
optimizer with a custom learning rate of 0.002 to compile our model. The categorical
cross entropy loss will be minimized during training. Refer to the following code:

>>opt = Adam(lr=0.002)

 model.compile(loss='categorical_crossentropy', optimizer = opt,
metrics=['accuracy'])

Let us now train the model. We will call model.fit() and pass the necessary
arguments. The batch size is selected as 128, and the model will be trained for 15
epochs on the training data using the following command:

>>model.fit(X_train, y_train, batch_size=128, epochs=15)

On executing the preceding command, the network will start getting trained. The
intermediate classification performance on the training data will be printed after
each epoch of training. You can expect a classification accuracy of around 80% on the
training set at the end of the first epoch and which will improve substantially. The
model will produce around 92% accuracy on the training set at the end of 15 epochs.
You can train for more epochs and check the model performance.

Model Optimization Using TensorFlow 117

Next, let us evaluate the model performance on the test set by executing the following
code:

>>score = model.evaluate(X_test, y_test)

 print('accuracy on test data:', score[1])

You can see that the model will give around 91% accuracy on the test set. With this,
we have created and evaluated the base model. Next, we will convert it into an
equivalent TFLite model. Before that, first, save the baseline model in our work
directory in .H5 format.

>>model.save('baseline_model.h5')

You can locate the model file by clicking the File icon on the left side of your Colab
notebook. The model size is around 2.1 megabytes. Remember that the file is only
temporarily stored in the workspace of your Colab notebook. Remember, all saved
files and variables in Colab are deleted as soon as you disconnect the runtime. You
can right-click on it and click on Download in order to save model file on your
host computer for offline access. The saved H5 model file can be loaded in Keras by
calling the function load_model(). Refer the below code example, where we load the
saved model as baseline_model:

>>from tensorflow.keras.models import load_model

 baseline_model = load_model('baseline_model.h5')

Now, let us convert the model into a TFLite model. TensorFlow has all the inbuilt
APIs for doing the conversion. For TensorFlow 2, We can do the conversion using
tf.lite.TFLiteConverter. We will call the from_keras_model() method under the
tf.lite.TFLiteConverter class and pass the baseline model as a function argument.
The model will be converted to the equivalent TFLite model using the convert()
method. See the following code:

>>converter = tf.lite.TFLiteConverter.from_keras_model(baseline_model)

 tflite_model = converter.convert()

We can further convert the baseline model to a TensorFlow graph using tf.function,
which contains all the computational operations, variables, and weights. This can be
achieved by exporting the model as a concrete function. Finally, the concrete function
is converted into a TFLite model using the method from_concrete_functions().
See the following code:

>># export model as a concrete function

118 Hands-on TinyML

 func = tf.function(baseline_model).get_concrete_function(

 tf.TensorSpec(baseline_model.inputs[0].shape, baseline_model.
inputs[0].dtype))

 # serialized graph representation of the concrete function

 func.graph.as_graph_def()

 # converting the concrete function to TFLite

 converter = tf.lite.TFLiteConverter.from_concrete_functions([func])

 tflite_model = converter.convert()

Now, let us save the TFLite model in the file system. We will import the Pathlib
library and store the model, as shown in the following code:

>>import pathlib

 tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

 tflite_model_file = tflite_models_dir/'model.tflite'

 tflite_model_file.write_bytes(tflite_model)

The first line of the preceding code will create a directory tflite_models in the Colab
workspace. Our TFLite model will be stored in that directory with .TFLITE file
extension. The code will also print the size of the TFLite file in the console. In our
case, the model size will be around 722 kilobytes. Recall, the baseline H5 model size
is 2.1 megabytes.

Now, we have a TFLite model. We will use it to make inferences in Python. This can
be done by using the tf.lite.Interpreter class.

The following steps are done to make an inference in TensorFlow Lite:
1. First, we create an instance of the Interpreter class. It takes the path

containing the .TFLIE file as an input.
2. Allocate memory to the Interpreter by calling the function allocate_

tensors().
3. After memory allocation, call get_input_details() and get_output_

details() to get some details about the input and the output tensor.

Model Optimization Using TensorFlow 119

4. Now, we are ready to make inferences. Get an image from the test data and
reshape it according to the desired input shape to the model.

5. Set the input tensor by copying the input data. Use the method set_tensor().
6. Invoke the interpreter to make an inference by calling Interpreter.invoke().
7. Get the value of the output tensor.
8. Covert it into the predicted class label.

Refer to the following code example. Here, we predict on the entire test set using the
Interpreter to obtain the overall classification accuracy.

>>tflite_model_file = 'tflite_models/model.tflite'

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

 pred_list = []

 for images in X_test:

 input_data = np.array(images, dtype=np.float32)

 input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 1)

 interpreter.set_tensor(input_index, input_data)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)

 prediction = np.argmax(prediction)

 pred_list.append(prediction)

 accurate_count = 0

 for index in range(len(pred_list)):

120 Hands-on TinyML

 if pred_list[index] == np.argmax(y_test[index]):

 accurate_count += 1

 accuracy = accurate_count * 1.0 / len(pred_list)

 print('accuracy = ', accuracy)

The accuracy obtained by executing the preceding code should be similar to the
baseline TensorFlow model. With this, we have learnt to convert a baseline model
into an equivalent TFLite model. However, the model size still remains 722 kilobytes,
which may not be suitable for deploying on smaller edge devices. As mentioned
earlier, the RAM size of a typical microcontroller can be fewer than 512 kilobytes.
Hence, the model needs to be further reduced. Remember, we have used a fairly
simple CNN architecture having only two convolutional layers. In practice, you may
need to design more complex networks, having more layers which will have more
trainable parameters, resulting in a larger model. Compressing of a model can have
a negative impact on its performance. Hence, we need to focus on an optimized
model compression. Fortunately, TensorFlow provides a software package called the
TensorFlow Model Optimization Toolkit that can effectively optimize large deep
neural networks without a significant performance drop. We will learn more about
different optimization techniques offered by TensorFlow in the next section through
coding examples.

TensorFlow Model Optimization Toolkit
The TensorFlow Model Optimization Toolkit consists of a set of libraries for the
effective optimization of large neural networks. The primary goal of optimization is
to enable a large machine learning model to seamlessly run on smaller edge devices
having restricted hardware resources in terms of memory and computational
capacity. They also need to consume lower battery power on the target hardware.
Such applications are particularly useful in scenarios where we require continuous
24 × 7 monitoring, for example, machine condition monitoring in large industries,
on-device cardiac health monitoring systems, smart voice assistant devices, and so
on. A few popular model optimizations techniques are as follows:

• Lowering the precision of model weights and activations
• Reducing some of the lesser important parameters in the model
• Updating the model topology

TensorFlow Model Optimization Toolkit provides a number of inbuilt optimization
functionalities, such as model quantization, weight pruning, and clustering which

Model Optimization Using TensorFlow 121

can effective compress large neural network models. Remember, each optimization
technique comes with a compromised model performance, which needs to be fine-
tuned. In TensorFlow model optimization, we take a baseline model as input, apply
the desired quantization techniques, and then fine-tune the model performance via
retraining, that eventually converts into a much smaller model for deployment.
The following sections will cover various optimization techniques provided by
TensorFlow Optimization Toolkit in some detail. Content of following sections are
strongly influenced by the examples provided in the official website of TensorFlow
for model optimization. We have used some of the readily available functions from
those examples. Interested readers can refer the official website to learn more1.

Quantization
Quantization is an optimization strategy used to lower the precision of a machine
learning model. Both model weights and activation outputs can be quantized in the
process. Integer-based quantization is particularly common in TinyML. It converts
the weights and activation outputs from the original 32-bit floating point numbers
to the nearest 8-bit fixed-point numbers. As a result, the model size is reduced by
a factor of 4. The resulting model also has a faster inference speed. Quantization is
particularly common in low-powered microcontroller devices, as many of them do
not have floating-point units in the hardware. TensorFlow supports two types of
quantization: post-training quantization and quantization-aware training.

Post-training quantization

Post-training quantization is the simplest form of quantitation that is performed on
a baseline floating-point TensorFlow model. Once the baseline model is trained with
sufficient accuracy, the model weights and activation outputs are quantized to 8-bit
precision. As expected, quantization of the model parameters might introduce errors
in the model performance. A major drawback of post-training quantization is that
it never compensates for the quantization error. Hence, it is important to check the
model performance after post-training quantization before deployment in order to
ensure that the performance is within acceptable limit.

In the following example, we will apply post-training quantization to our baseline
CNN model. It is important to remember that the size of the baseline TFLite model
is 722 kilobytes. It is fairly simple to perform integer quantization in TFLite. We do
not require any new package. Once the instance for TFLiteConverter is created, we
need to add the following line of code before converting it into the TFLite model:

>>converter.optimizations = [tf.lite.Optimize.DEFAULT]

1 https://www.tensorflow.org/model_optimization/guide/get_started

122 Hands-on TinyML

The complete code for post-training quantization is as follows:

>>converter = tf.lite.TFLiteConverter.from_keras_model(baseline_model)

 converter.optimizations = [tf.lite.Optimize.DEFAULT]

 tflite_model_ptq = converter.convert()

Now, save the model as a .TFLITE file by executing the following code. The quantized
model, model_ptq.tflite will be saved under the same tflite_models directory
created earlier in the Colab workspace.

>>tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

 tflite_model_file = tflite_models_dir/'model_ptq.tflite'

 tflite_model_file.write_bytes(tflite_model_ptq)

The quantized model size is around 188 kilobytes, which is roughly 4x smaller than
the base TFLite model, which has a size of 722 kilobytes. Let us now evaluate the
quantized model performance on the test set. Execute the following test code:

>>tflite_model_file = 'tflite_models/model_ptq.tflite'

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

 pred_list = []

 for images in X_test:

 input_data = np.array(images, dtype=np.float32)

 input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 1)

 interpreter.set_tensor(input_index, input_data)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)

 prediction = np.argmax(prediction)

Model Optimization Using TensorFlow 123

 pred_list.append(prediction)

 accurate_count = 0

 for index in range(len(pred_list)):

 if pred_list[index] == np.argmax(y_test[index]):

 accurate_count += 1

 accuracy = accurate_count * 1.0 / len(pred_list)

 print('accuracy = ', accuracy)

The classification accuracy will be similar to the baseline model. So, we can conclude
that using post-training quantization, we get a 4× smaller model with a similar
accuracy.

Quantization-aware training

In post-training quantization, we take a pre-trained model and convert the weights
and activation output into 8-bit integers. One major disadvantage is that we do not
fine-tune the model after quantization. In most of the cases, lowering the precision
of the model weights will introduce a loss called quantization error. This can have
a negative impact on model performance. Quantization-aware training tries to
minimize the loss via backpropagation by retraining the model for few epochs. By
doing this, it mitigates the impact of quantization error to some extent.

Let us experience quantization-aware training with a concrete example. We will
again quantize the baseline model. Before that, we need to install the necessary
software package, which is not readily installed with TensorFlow. Execute the
following command in Colab:
>>pip install -q tensorflow-model-optimization

It will install all the necessary libraries for you. Next, we will load the baselined
CNN model to perform quantization.
>>baseline_model = load_model('baseline_model.h5')

Now, let us apply quantization-aware training. First, import the necessary libraries.
>>import tensorflow_model_optimization as tfmot

Next, we will create an instance of tf.quantization.keras.quantize_model to
define the quantization-aware model. We will use the inbuilt function, quantized_
model(). Refer to the following code:
>>quantized_model = tfmot.quantization.keras.quantize_model

124 Hands-on TinyML

 q_aware_model = quantized_model(baseline_model)

Since quantization-aware training needs a model retraining for fine-tuning the
performance, we need to configure the model parameter, which will be quite similar
to the base model. Refer to the following code:
>>q_aware_model.compile(optimizer='adam',

 loss=tf.keras.losses.CategoricalCrossentropy(from_
logits=True),

 metrics=['accuracy'])

Here, we have used the default learning rate for retraining. In general,
retraining is preferred to be done at a much smaller learning rate than the
learning rate used to train the baseline model.

The model summary is shown in figure 5.3:

Figure 5.3: Summary of the model after applying quantization-aware training

Model Optimization Using TensorFlow 125

All layers in the model are prefixed by “quant”. Note that the resulting model is
only quantization-aware but not yet quantized. The floating point model weights
and activations are rounded to mimic integer values. Before converting them into
full-integer, we will retrain to fine-tune the model. Since we already have a baseline
model, retraining can be done on a subset of the training data. However, in this
example, we will use the entire training data. See the following code, where we
retrain our quantization-aware model for two epochs:

>>q_aware_model.fit(X_train, y_train, batch_size=500, epochs=2, validation_
split=0.1)

The preceding code randomly selects 10% of training data as a validation set and
evaluates the model performance on the validation data at each epoch. In this way,
we can keep a track on the model’s accuracy. Once the training is done, we will
quantize the model into an 8-bit integer and save as a TFLite model. This part of the
code is similar to what we have done earlier in post-training quantization. Refer to
the following code to convert and save the new model:

>>converter = tf.lite.TFLiteConverter.from_keras_model(q_aware_model)

 converter.optimizations = [tf.lite.Optimize.DEFAULT]

 tflite_model_qat = converter.convert()

 tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

 tflite_model_file = tflite_models_dir/'model_qat.tflite'

 tflite_model_file.write_bytes(tflite_model_qat)

Upon executing, you can see that the resulting model model_qat.tflite has a
size of 188 kilobytes which is quite similar to what we achieved via post-training
quantization. Now, let us examine the model performance on the test set. Execute
the following code:

>>tflite_model_file = 'tflite_models/model_qat.tflite'

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

126 Hands-on TinyML

 output_index = interpreter.get_output_details()[0]['index']

 pred_list = []

 for images in X_test:

 input_data = np.array(images, dtype=np.float32)

 input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 1)

 interpreter.set_tensor(input_index, input_data)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)

 prediction = np.argmax(prediction)

 pred_list.append(prediction)

 accurate_count = 0

 for index in range(len(pred_list)):

 if pred_list[index] == np.argmax(y_test[index]):

 accurate_count += 1

 accuracy = accurate_count * 1.0 / len(pred_list)

 print('accuracy = ', accuracy)

You can see that the model will produce a classification accuracy above 92% on the
test set. So, we conclude that with quantization-aware training, you can get slightly
higher accuracy compared to post-training quantization.

In the preceding example, we have applied quantization-aware training to the entire
model. However, you may not want to quantize all the layers. A fully quantized
model can often be less accurate compared to the baseline model, even after
retraining. To mitigate that risk, the critical feature extraction layers are often not
quantized in a deep neural network. For example, you may prefer to quantize only
the first few convolutional layers of a CNN.

Model Optimization Using TensorFlow 127

In the following code, we will quantize only the dense layers of the baseline CNN.
We will first define a function apply_quantization(layer) to define which layers
will be quantized. Next, we will use tf.keras.models.clone_model to apply
quantization to the dense layers by calling the function. Refer to the following code:

>>def apply_quantization(layer):

 if isinstance(layer, tf.keras.layers.Dense):

 return tfmot.quantization.keras.quantize_annotate_layer(layer)

 return layer

 annotated_model = tf.keras.models.clone_model(

 baseline_model,

 clone_function=apply_quantization,

)

 q_aware_model_dense = tfmot.quantization.keras.quantize_
apply(annotated_model)

 q_aware_model_dense.summary()

The model summary is shown in figure 5.4:

Figure 5.4: Model summary after applying quantization-aware training to dense layers

128 Hands-on TinyML

You can see only the dense layers are prefixed by “quant.” Similar to the previous
example, the model can now be trained and converted to a quantized TFLite model.
You can also evaluate the model performance on the test set. Since only the dense
layers are quantized, the resultant model will be less compressed than a fully
quantized model. Remember that in many practical applications, you may need to
opt for selective quantization in order to mitigate a performance drop and maintain
a balanced trade-off between model size and accuracy.

Weight pruning
Weight pruning is another popular model optimization technique that zeros out
some of the less significant model weights. The pruned elements are trimmed
from the model to introduce sparsity. Such sparse models are easy to compress and
occupy lesser memory space in the target device. During inference, the zero weights
are skipped, resulting in an improved latency due to lesser mathematical operations.

Similar to quantization-aware training, weight pruning also requires retraining. The
pruned elements are zeroed out, and they do not take part in the backpropagation for
learning the model weights. The most common pruning criteria is the magnitude-
based weight pruning. In this process, the connections in the network having
absolute values of the weights below a certain threshold are set to zero. Weights
having very small absolute values typically have less contribution in the model
outcome. Zeroing them will have a minimal impact on the overall performance.
Introducing a higher amount of sparsity results in a more compressed model but
may cause a negative impact on model performance. Hence, a trade-off between
model size and accuracy needs to be maintained.

In the following example, we will apply magnitude-based weight pruning to our
baseline model. The necessary functionalities lie in the class tfmot.sparsity.keras.
prune_low_magnitude. We will load the baseline model from the saved .H5 file. Next,
we will define a pruning schedule, where we start by applying 40% of sparsity to
the baseline model, then gradually increase the sparsity, and eventually stop at 75%
of model sparsity in two epochs. We define a polynomial function to introduce the
sparsity in a step-wise manner during training. The step-size is defined based on the
size of the training data. Refer to the following code for more details:

Model Optimization Using TensorFlow 129

>>prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

 batch_size = 128

 epochs = 2

 validation_split = 0.1 # 10% of training set will be used for
validation set.

 Num_samples = X_train.shape[0] * (1 – validation_split)

 end_step = np.ceil(num_samples / batch_size).astype(np.int32) * epochs

 # Define model for pruning.

 Pruning_params = {

 'pruning_schedule': tfmot.sparsity.keras.
PolynomialDecay(initial_sparsity=0.40,

 final_
sparsity=0.75,

 begin_step=0,

 end_step=end_step)

 }

 model_for_pruning = prune_low_magnitude(baseline_model, **pruning_
params)

Now, we will compile the model for training.

>>model_for_pruning.compile(optimizer='adam',

 loss=tf.keras.losses.CategoricalCrossentropy(from_
logits=True),

 metrics=['accuracy'])

130 Hands-on TinyML

The model summary is shown in figure 5.5:

Figure 5.5: Model summary after applying weight pruning

Note the prefix “prune_low_magnitude” at each layer. Now, the model will be trained
for two epochs on the training set. For the training, we need to use a Keras callback
that will update the pruning wrappers with the optimizer step. We will again use
10% of the training data for internal validation. See the following code:

>>import tempfile

 log_dir = tempfile.mkdtemp()

 callbacks = [

 tfmot.sparsity.keras.UpdatePruningStep(),

 tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir)

]

Model Optimization Using TensorFlow 131

 model_for_pruning.fit(X_train, y_train,

 batch_size=batch_size, epochs=epochs, validation_
split=validation_split,

 callbacks=callbacks)

Once trained, we can convert the model using a TFLite converter and save it in the
directory. Remember that before we convert the model, we need to apply strip_
pruning() to restore the original model with sparse weights. Refer to the following
code:

>>model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_
pruning)

 converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)

 tflite_model_pruned = converter.convert()

 tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

 tflite_model_file = tflite_models_dir/'model_pruned.tflite'

 tflite_model_file.write_bytes(tflite_model_pruned)

Now, it is time to evaluate the performance of the pruned model model_pruned.
tflite. We will use the same evaluation code to classify the model on the test set.

>>tflite_model_file = 'tflite_models/model_pruned.tflite'

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

 pred_list = []

 for images in X_test:

132 Hands-on TinyML

 input_data = np.array(images, dtype=np.float32)

 input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 1)

 interpreter.set_tensor(input_index, input_data)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)

 prediction = np.argmax(prediction)

 pred_list.append(prediction)

 accurate_count = 0

 for index in range(len(pred_list)):

 if pred_list[index] == np.argmax(y_test[index]):

 accurate_count += 1

 accuracy = accurate_count * 1.0 / len(pred_list)

 print('accuracy = ',accuracy)

On executing the preceding code, we will see that the pruned model will give around
90% accuracy on the test set, which is slightly lesser compared to quantization-based
optimization. A possible reason for lower accuracy may be due to the high amount
of sparsity applied to the model, which is 75% in our case. You can try to reduce
the amount of sparsity in the previous code example and check the performance.
Finally, we will measure how much the model is compressed by using sparsity. We
will define a function get_zipped_model() that saves the model as a compressed
ZIP file and print the size of the zipped model. Refer to the following code:

>>def get_gzipped_model(file):

 import os

 import zipfile

 _, zipped_file = tempfile.mkstemp('.zip')

Model Optimization Using TensorFlow 133

 with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_
DEFLATED) as f:

 f.write(file)

 return os.path.getsize(zipped_file)

Now, let us check the model size after compressing it as ZIP files. We will first print
the zipped size of the original TFLite model, followed by the pruned model.

>>print('Size of compressed baseline model: %.2f bytes' % (get_
gzipped_model('tflite_models/model.tflite')))

>>print('Size of zipped pruned TFlite model: %.2f bytes' % (get_
gzipped_model('tflite_models/model_pruned.tflite')))

You can see that the size of the original TFLite model after compression is around
671 kilobytes, whereas the size of the pruned model is around 245 kilobytes.

In the previous example, we applied weight pruning to the entire model. Similar to
quantization-aware training, we can prune only a few selected layers. The following
code example will prune only the dense layers of the model. We will define a function
apply_pruning() and pass the dense layers to be pruned.

>>def apply_pruning(layer):

 if isinstance(layer, tf.keras.layers.Dense):

 return tfmot.sparsity.keras.prune_low_magnitude(layer)

 return layer

 model_for_pruning = tf.keras.models.clone_model(

 baseline_model,

 clone_function=apply_pruning)

You can now train the model and evaluate it on the test set. As expected, the
model will be larger than the fully pruned model, but you will likely to get a better
classification accuracy.

134 Hands-on TinyML

Weight clustering
Another efficient optimization technique is weight clustering which aims to reduce
the number of unique weight values in a model. We only need to store the unique
weight values in the model, which requires less memory space to store in the target
device. Clustering algorithms are used in machine learning to deal with unlabelled
data. Clustering is an unsupervised machine learning approach that divides data
points into groups (clusters) such that all data points having similar statistical
properties are grouped together. We can roughly assume that all members inside
one cluster belong to the same category. In weight clustering, the weight values in
each layer of a model are divided into a given number of clusters. All members in a
particular cluster are represented by a single value. For example, the cluster centroid
can be used as the representative value for all the weights in that cluster. Suppose
you have 100 weights in a layer. You divide them into 10 different clusters. Then, all
the weights in that layer can be represented by 10 unique values corresponding to
the 10 cluster centroids. You can achieve a more compressed model by using a lesser
number of clusters.

In the following example, we will apply weight clustering using the function
tfmot.clustering.keras.cluster_weights. Load the baseline model and execute the
following code:

>>cluster_weights = tfmot.clustering.keras.cluster_weights

 CentroidInitialization = tfmot.clustering.keras.CentroidInitialization

 clustering_params = {

 'number_of_clusters': 16,

 'cluster_centroids_init': CentroidInitialization.KMEANS_PLUS_PLUS

 }

 clustered_model = cluster_weights(baseline_model, **clustering_params)

Here, we divide the weights of each layer into 16 clusters. The cluster centroids are
learnt using K-Means algorithm. The centroids are initialized by the K-Means++
algorithm. Similar to quantization-aware training and weight pruning, we again
need to fine-tune the model to optimize the performance. So, we will retrain it on the
entire training set. Refer to the following code. Here, we retrain with a much smaller
learning rate compared to the base model.

Model Optimization Using TensorFlow 135

>>opt = tf.keras.optimizers.Adam(learning_rate=1e-5)

 clustered_model.compile(

 loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),

 optimizer=opt,

 metrics=['accuracy'])

A summary of the model is shown in figure 5.6:

Figure 5.6: Model summary after applying weight clustering

We will now retrain the model for two epochs.

>>clustered_model.fit(

 X_train,

 y_train,

 batch_size=128,

136 Hands-on TinyML

 epochs=2,

 validation_split=0.1)

Once the model is fine-tuned, we will convert it into a TFLite model and save it in
the directory. Similar to weight pruning, we need to apply the strip_clustering()
method before in order to restore the model with clustered weights. Refer to the
following code:

>>model_for_export = tfmot.clustering.keras.strip_clustering(clustered_
model)

 converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)

 tflite_model_clustered = converter.convert()

 tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

 tflite_model_file = tflite_models_dir/'model_clustered.tflite'

 tflite_model_file.write_bytes(tflite_model_clustered)

Finally, execute the following code to evaluate the clustered TFLite model on the test
set:

>>tflite_model_file = 'tflite_models/model_clustered.tflite'

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

 pred_list = []

 for images in X_test:

 input_data = np.array(images, dtype=np.float32)

Model Optimization Using TensorFlow 137

 input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 1)

 interpreter.set_tensor(input_index, input_data)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)

 prediction = np.argmax(prediction)

 pred_list.append(prediction)

 accurate_count = 0

 for index in range(len(pred_list)):

 if pred_list[index] == np.argmax(y_test[index]):

 accurate_count += 1

 accuracy = accurate_count * 1.0 / len(pred_list)

 print('accuracy ', accuracy)

The clustered model will give around 91% accuracy on the test set, which is very
close to the accuracy reported by the baseline model as well as the quantized model.

Now, once again, we will again call our previously defined function get_gzipped_
model() to get the size of the zipped cluster model. Execute the following code:

>>print('Size of zipped clustered TFlite model: %.2f bytes' % (get_
gzipped_model('tflite_models/model_clustered.tflite')))

The compressed model size is around 130 kilobytes. Remember in the previous
example, the size of the compressed TFLite model is 245 kilobytes after pruning.
Thus, we have achieved a smaller model by weight clustering along with a better
model performance.

Like other optimization techniques, weight clustering can be applied to a few
selected layers of a model. The following code applies weight clustering to the dense
layers of the baseline model.

>>def apply_clustering(layer):

 if isinstance(layer, tf.keras.layers.Dense):

138 Hands-on TinyML

 return cluster_weights(layer, **clustering_params)

 return layer

 clustered_model = tf.keras.models.clone_model(

 baseline_model,

 clone_function=apply_clustering,

)

A brief summary of different optimization techniques in terms of model accuracy
and size is provided in table 5.1.

Table 5.1: Impact of various optimization techniques on the CNN model on Fashion_MINIST

Model description
Accuracy on the

Fashion-MNIST test
set

TFLite Model size

Baseline model (no optimization) 0.91 722 kilobytes
Post-training quantization 0.91 188 kilobytes
Quantization aware training 0.92 188 kilobytes
Weight pruning 0.90 245 kilobytes (after zipped)
Weight clustering 0.91 130 kilobytes (after zipped)

Collaborative optimization
So far in this chapter, we have discussed three different optimization techniques,
quantization, weight pruning, and weight clustering. All the optimization techniques
have their own advantages and disadvantages. Now a question may arise, whether
we can apply more than one optimization technique to one model. The answer is
yes. In collaborative optimization, we can apply multiple quantization techniques
one after another. This often helps in achieving the best model performance on the
target platform in terms of accuracy, size, and inference latency.

Collaborative optimization can have various combinations based on your choice. In
this section, we will apply sparsity-preserving clustering to the baseline model as an
example of collaborative optimization. In this approach:

1. First, the baseline model will be pruned to add sparsity.
2. Next, we will apply weight clustering to the pruned model, ensuring the

model sparsity is preserved.

Model Optimization Using TensorFlow 139

3. Finally, we will apply post-training quantization and convert the model into
a full integer TFLite model.

We will start implementing by loading the baseline model.

>>baseline_model = load_model('baseline_model.h5')

In the first stage, we will fine-tune the baseline model by applying sparsity. We will
define a pruning schedule to apply constant 50% sparsity and retrain the model. As
mentioned earlier, we need to apply a Keras callback during the training. See the
following code:

>>import tensorflow_model_optimization as tfmot

 prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

 pruning_params = {

 'pruning_schedule': tfmot.sparsity.keras.ConstantSparsity(0.5,
begin_step=0, frequency=100)

 }

 callbacks = [

 tfmot.sparsity.keras.UpdatePruningStep()

]

 pruned_model = prune_low_magnitude(baseline_model, **pruning_params)

 pruned_model.summary()

Now, we can compile our model and train. We will use an Adam optimizer with
a smaller learning rate. The training will be done for three epochs on the entire
training set. A small portion of data containing 10% of the training data is used as a
validation set. Execute the below code:

>>opt = tf.keras.optimizers.Adam(learning_rate=1e-5)

 pruned_model.compile(

 loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),

 optimizer=opt,

140 Hands-on TinyML

 metrics=['accuracy'])

 pruned_model.summary()

 pruned_model.fit(X_train, y_train, batch_size=128, epochs=3,validation_
split=0.1, callbacks=callbacks)

Recall our previous example of weight pruning. Once the training is done, we need
to apply the strip_pruning() method to restore the original model with sparse
weights. The same operation will be done here. We will also create a clone of the
model for future usage. Refer to the following code:

>>stripped_pruned_model = tfmot.sparsity.keras.strip_pruning(pruned_
model)

 # make a cloning of the model

 stripped_pruned_model_copy = tf.keras.models.clone_model(stripped_
pruned_model)

 stripped_pruned_model_copy.set_weights(stripped_pruned_model.get_
weights())

Now, we will apply sparsity-preserving clustering to the pruned model. We will use
eight clusters in each layer. The cluster centroids are initialized by the K-Means++
algorithm. Refer the below code:

>>from tensorflow_model_optimization.python.core.clustering.keras.
experimental import (

 cluster,

)

 cluster_weights = tfmot.clustering.keras.cluster_weights

 CentroidInitialization = tfmot.clustering.keras.
CentroidInitialization.KMEANS_PLUS_PLUS

 cluster_weights = cluster.cluster_weights

Model Optimization Using TensorFlow 141

 clustering_params = {

 'number_of_clusters': 8,

 'cluster_centroids_init': CentroidInitialization.KMEANS_PLUS_PLUS,

 'preserve_sparsity': True

 }

 sparsity_clustered_model = cluster_weights(stripped_pruned_model_copy,
**clustering_params)

Note that while defining the clustering parameters, we have passed the parameter
preserve_sparsity as “True” to preserve the model sparsity achieved in the previous
step. Now, we will again train the model for another three epochs.

>>sparsity_clustered_model.compile(optimizer='adam',

 loss=tf.keras.losses.CategoricalCrossentropy(from_
logits=True),

 metrics=['accuracy'])

 sparsity_clustered_model.fit(X_train, y_train, batch_size=128,
epochs=3, validation_split=0.1)

Once trained, we will restore the model by applying the strip_clustering()
method.

>>stripped_sparsity_clustered_model = tfmot.clustering.keras.strip_
clustering(sparsity_clustered_model)

Finally, we will apply post-training quantization on the sparsity-preserved clustered
model and convert it into a full integer TFLite model to save in the file system.

>>converter = tf.lite.TFLiteConverter.from_keras_model(stripped_sparsity_
clustered_model)

 converter.optimizations = [tf.lite.Optimize.DEFAULT]

 sparsity_clustered_quant_model = converter.convert()

 tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

142 Hands-on TinyML

 tflite_model_file = tflite_models_dir/'model_sparsity_clustered_qunat.
tflite'

 tflite_model_file.write_bytes(sparsity_clustered_quant_model)

Now, we have created and saved the TFLite model, model_sparsity_clustered_
qunat.tflite. Let us evaluate the model performance on the entire test set:
>>tflite_model_file = 'tflite_models/model_sparsity_clustered_qunat.tflite'

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

 pred_list = []

 for images in X_test:

 input_data = np.array(images, dtype=np.float32)

 input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 1)

 interpreter.set_tensor(input_index, input_data)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)

 prediction = np.argmax(prediction)

 pred_list.append(prediction)

 accurate_count = 0

 for index in range(len(pred_list)):

 if pred_list[index] == np.argmax(y_test[index]):

 accurate_count += 1

 accuracy = accurate_count * 1.0 / len(pred_list)

 print('accuracy = ', accuracy)

Model Optimization Using TensorFlow 143

You will get around 90.5% accuracy on the test set. It is important to remember that
in this approach, we have applied 50% sparsity to the baseline model, followed by
weight clustering using only eight clusters. You can get a more accurate model by
applying a reduced model sparsity and a higher number of clusters in each layer.

Finally, we will call the function get_gzipped_model() to obtain the model size after
compression.

>>print('Size of zipped sparsity preserved clustered TFlite model: %.2f
bytes' % (get_gzipped_model('tflite_models/model_sparsity_clustered_
qunat.tflite')))

The compressed model size is around 61 kilobytes. The size of the baseline
unoptimized TFLIte model was 722 kilobytes. Recall that in our previous examples,
the size of the compressed pruned model was 245 kilobytes, and the size of the
compressed clustered model was 130 kilobytes. So, we can achieve a much smaller
model using collaborative optimization.

In this example, we have shown only one type of collaborative optimization, the
sparsity-preserving clustering. For experimental purposes, you can change the
sequence of different optimization techniques on the base model and check the
corresponding impact on model size and accuracy.

Conclusion
Deep learning models are often large in size. A standard deep learning model needs
to undergo certain optimization steps in order to effectively deploy on resource-
constrained hardware. Model optimization is a critical part in TinyML. In this chapter,
we have experienced how a large neural network can be effectively optimized using
TensorFlow libraries. We have learnt about TensorFlow Lite, a specially designed
TensorFlow library to convert TensorFlow models into a portable FlatBuffers format
for efficiently deploying on a plethora of smaller edge devices and microcontrollers.
We have also learnt how a TensorFlow model can be effectively compressed within
an accepted range of performance drop using the TensorFlow Optimization Toolkit.
TensorFlow Optimization Toolkit supports various optimization algorithms such
as quantization, weight pruning, and clustering. Different optimization techniques
have different impacts on the model performance. In this chapter, we have created a
baseline CNN model for classifying different fashion products on a public database.
Subsequently, we have applied various optimization techniques on the baseline
model and evaluated their impact on model size and accuracy. In general, model
compression often comes with a performance drop. In order to get the optimum
performance, the compressed model requires to fine-tune via retraining.

144 Hands-on TinyML

Now, we have some basic knowledge in optimizing a machine learning model to
deploy as a TinyML application. However, we have done all the model designing
as well as model inference on Colab notebook using cloud connectivity. In the
upcoming chapter, we will deploy a compressed TensorFlow model on a real edge
device to make inference.

Key facts
• TensorFlow Lite comprises a set of tools for compressing machine learning

models to run on low-powered edge devices.
• A TensorFlow Lite model is converted into a portable FlatBuffers format, and

the resulting file is stored in .TFLITE format.
• TensorFlow Lite supports various platforms, such as Android, iOS, embed-

ded Linux, and microcontrollers. It also supports diverse programming
languages such as C. C++, JAVA, Python, and so on.

• With TensorFlow Optimization Toolkit, we can efficiently compress a large
machine learning model with a minimum performance loss.

• The precision of the model weights and activation can be reduced from 32-bit
floating points to 8-bit integers using quantization, resulting in a 4x smaller
and much faster model.

• Weight pruning introduces sparsity to a model by zeroing out some
insignificant weights.

• Weight clustering reduces the number of unique weight values in a model.
• The optimized models often require retraining to fine-tune their performance.
• In collaborative optimization, we can incorporate multiple optimization

steps into a model that often results in a better performance.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
By now, we have become familiarized with TensorFlow in building machine learning
models. Machine learning, particularly the neural network models are resource
hungry. Whereas, TinyML applications are intended to run on smaller edge devices
with limited hardware resources in terms of processing power and inbuilt memory.
In Chapter 5, Model Optimization Using TensorFlow, we saw how a large TensorFlow
model can be effectively optimized into a much smaller TFLite model for smaller
edge devices. However, in all previous chapters, we have used the Colab notebook
to develop our machine learning models. Colab is a browser-based development
notebook where we actually run our Python scripts on a remote server connected
via the internet, which is equipped with a powerful Central Processing Unit (CPU),
Graphics Processing Unit (GPU), or Tensor Processing Unit (TPU) to perform
heavy computation. Although the previous chapter discussed how to compress
a large TensorFlow model into a much smaller TFLIte model, we still trained the
models and made inferences on Colab. In this chapter, we will create our first real-
world TinyML application for image classification and deploy it on an edge device
to make inferences. For this project, we will use Raspberry Pi as our target device
to run the application. As discussed in Chapter 1, Raspberry Pi is a commercially

Chapter 6
Deploying My First

TinyML Application

146 Hands-on TinyML

available small low-cost Single Board Computer (SBC) popularly used in edge
computing and various Internet of Things (IoT) applications. In terms of processing
power, it is quite comparable to modern smartphones. Unlike microcontrollers,
it has a dedicated Linux-based operation system that enables it to be a fully-
fledged computer with limited computing capacity. You can easily interact with a
Raspberry Pi with standard input/output devices. It also supports a wide range of
programming languages. You can even run Python programs on it. Moreover, duly
optimized TensorFlow models are well-supported to run on Pi. Although the main
goal of this book is to deploy TinyML applications on microcontrollers which only
support low-level programming language equivalent to C/C++, this chapter will
give you a feel of how to create a practical machine learning model from scratch and
to deploy it on an edge device. Since Raspberry Pi comes with a Python interpreter,
you can readily deploy your model without converting in another programming
language. In later chapters, we will learn how to further convert a TFLite model into
the equivalent libraries for deploying on microcontrollers.

Structure
In this chapter, we will discuss the following topics:

• The MobileNet architecture
 o Depthwise separable convolution
• Image classification using MobileNet
 o Brief introduction to transfer learning
 o Implementing MobileNet using transfer learning
 o Creating an optimized model for smaller target device
 o Evaluation of the model on the test set
• Introduction to Raspberry Pi
• Getting started with the Pi
 o Installing the operating system
 o Setting up the Pi
 o Remotely accessing the Pi
• Deploying the model on Raspberry Pi to make inference

Deploying My First TinyML Application 147

Objectives
In this chapter, we will create our first TinyML project on a commercial edge device,
the Raspberry Pi, for on-device image classification. The project will involve the
following steps. We will first design a Convolutional Neural Network (CNN) for
image classification. The model will be trained and evaluated on the CIFAR-10
database, another popular open-access database containing various types of low-
resolution color images for different types of living and nonliving things such as
cats, dogs, automobiles, ships, and so on.

In all previous chapters, we defined our own CNN structures for classification
However, a simple CNN may not give the desired output on non-trivial databases
such as CIFAR-10. In this chapter, we will use a new CNN-based deep learning
architecture, MobileNet, which is a specially designed neural network to run on
low-powered edge devices. Rather than training the model from scratch, we will
use the weights of MobileNet already trained on another dataset and modify only
the last few layers of the architecture by training on CIFAR-10. The concept is called
transfer learning, where a model pretrained on one dataset can be marginally trained
on another similar dataset for only few epochs but still gives very good classification
accuracy on the second dataset. The chapter has two parts. In part one, we will
train and evaluate our MobileNet and convert it into the equivalent TFLite model.
This part of the project will be done on Colab. In the second part of the project,
the TFLite model will be deployed on a Raspberry Pi device to make inferences on
offline images. We will learn in a step-by-step manner to set up the Raspberry Pi by
installing the necessary software to run a TensorFlow model.

The MobileNet architecture
MobileNet is an efficient and portable Convolutional Neural Network (CNN)
architecture designed for low-powered, resource-constrained mobile and embedded
devices. The architecture was proposed by Andrew Howard and colleagues in 2017 in
a paper, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications.” Instead of performing standard convolution operations, MobilNets
are based on an architecture that performs depthwise separable convolution, an
efficient convolution operation that results in a much lighter model. The architecture
maintains an efficient trade-off between latency and accuracy using two model
hyperparameters, width multiplier and resolution multiplier so that the developers
can choose the right model size for their applications.

148 Hands-on TinyML

Depthwise separable convolution
The MobileNet model is based on depthwise separable convolution. A depthwise
separable convolution layer consists of two separate operations, a depthwise
convolution and a pointwise convolution. Suppose you have a color input image
of 64 × 64 × 3, that is, having a tensor shape of (64, 64, 3), and you want to perform
the convolution with 32 filters having a kernel size of 3 × 3. You have also applied
zero padding to the input. Hence, the desired output tensor shape after convolution
will be (64, 64, 32). Under standard convolution, there will be an element-wise
multiplication between the input and the filters. Since there are 32 filters, for every
pixel in the input, there will be 3 × 3 × 32 multiplication. The total number of
multiplications required to cover the image will be: (64 × 64 × 3) × (3 × 3 × 32) =
35,38,944, which is definitively quite a big amount of mathematical operations.

Under depthwise separable convolution, we perform the following steps:
1. First, we apply depthwise convolution. Unlike standard convolution,

depthwise convolution is performed to a single channel at a time. The kernel
size for this will be 3×3×1. So, for all three input channels, the number of
multiplications will be: (64 × 64)×(3 × 3×1)×3 = 1,10,592.

2. Next, we will perform pointwise convolution using 1 × 1 kernel on all
three input channels. So, kernel size will be 1×1×3. Since we have 32 output
channels, the number of required multiplication for all the pixels will be:
(64×64)×(1×1×3)×32 = 3,93,216

So, the total number of operations are : 1,10,592 + 3,93,216 = 5,03,808. In comparison
to standard convolution, the total number of mathematical operations are reduced
by a factor of 7. The number of trainable parameters is also reduced by a similar
factor, resulting in a smaller model size and faster inference speed.

The architecture of MobileNet is quite similar to a standard deep CNN. The first
layer of the architecture is generally a standard convolution layer. Subsequently,
there are multiple depthwise separable convolution layers with associated batch
normalization and ReLU activation layers. Depending upon the target application,
the architectural topology can be modified. The final layer contains a softmax
function for classification.

Image classification using MobileNet
In this project, we will design a MobileNet architecture in TensorFlow for image
classification on a real-world edge device. We will primarily use the CIFAR-10
database to train and evaluate our model. As mentioned earlier, the project will be

Deploying My First TinyML Application 149

implemented in two parts. Initially, we will define our network, train, and internally
evaluate the model, and then convert it to the equivalent TFLite model. This part of
the project will be done in Colab. In the second part, we will deploy the TFlite model
to a Raspberry Pi device to make inferences. Note: Training a machine learning
model is computationally expensive. In TinyML, we mostly train our model on a
powerful server or cloud using the power of GPU or TPU. Since training is a one-
time job in most applications, we can afford to train offline. Certain applications
like biometric authentication require more frequent training, which is required to be
done on-device. In the upcoming chapter, we will implement a project that requires
on-device training.

Like MNIST and fashion-MNIST, CIFAR-10 is another open-access computer vision
database popularly used for the evaluation of object detection algorithms. The
original database was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
It is a subset of 80 million tiny images, comprising 60,000 color images with 32
× 32 resolution that are categorized into 10 different classes. Each class has 6,000
examples. There are 50,000 training images and 10,000 test images in the database.
The numerical values corresponding to different class labels are as follows:

• 0—Airplane
• 1—Automobile
• 2—Bird
• 3—Cat
• 4—Deer
• 5—Dog
• 6—Frog
• 7—Horse
• 8—Ship
• 9—Truck

Create a new Colab notebook to implement the project and connect to a Python
runtime. For this project, we strongly recommend to utilizes the power of GPU for
a faster training. Go to the Runtime tab on your notebook, click on Change runtime
type, and select GPU from Hardware accelerator. Similar to MNIST and Fashion-
MNIST databases, CIFAR-10 is readily available under TensorFlow datasets. So, we
can load it using a single line of code.

Let us first import the necessary libraries.

>>import numpy as np

150 Hands-on TinyML

 import matplotlib.pyplot as plt

 import tensorflow as tf

 from tensorflow.keras.datasets import cifar10

 from tensorflow.keras.models import Sequential

 from tensorflow.keras.layers import Dense, Flatten, Dropout

Now, let us load the database by executing the following command:

>>(trainX, trainY), (testX, testY) = cifar10.load_data()

Next, we will check the number of images in the training and test set and their
dimension. Execute the following code:

>>print('training set ', '\nData :', trainX.shape, '\nLabel :', trainY.
shape)

 print('\ntest set', '\nData :', testX.shape, '\nLabel :', testY.shape)

The training set has 50,000 images, and the test set has 10,000 images. Each color
image has a dimension of 32×32×3.

Now, let us plot a few random sample images from the training set along with their
class labels. Execute the following code to randomly select and print nine images
from the training set:

>>from numpy import random

 plt.rcParams['figure.figsize'] = (7,7)

 for i in range(9):

 plt.subplot(3,3,i+1)

 num = random.randint(0, len(trainX))

 plt.imshow(trainX[num], cmap='gray')

 plt.title("Class {}".format(trainY[num]))

 plt.tight_layout()

Deploying My First TinyML Application 151

The code output on one execution is shown in figure 6.1:

Figure 6.1: Sample images from the CIFAR-10 database

It is evident that CIFAR-10 is a complex dataset compared to MNIST. The images
are collected in more practical scenarios. Many of those images have ambiguous
background. Now, we will build our MobileNet model for classification. But before
doing that, we need to convert the class labels to one hot encoded vector. We will
also do a pre-processing step to scale down the pixel values of the images between
0 and 1. Refer to the following code to perform the operations:

>>from tensorflow.keras.utils import to_categorical

 trainX = trainX.astype('float32') # change integers to 32-bit floating
point numbers

 testX = testX.astype('float32')

 trainX /= 255 # normalize the input

 testX /= 255

152 Hands-on TinyML

 trainY_one_hot = to_categorical(trainY)

 testY_one_hot = to_categorical(testY)

Now, we can define our MobileNet. A major advantage of TensorFlow is that it
contains a number of popular deep learning models along with the model weights,
pretrained on large databases. You can load any of these models along with the
pretrained weights using a single function call and can readily use them in your
applications. In machine learning, we can reuse the weights of a pretrained model
obtained on one database to evaluate on other related databases with a minimum
retraining. The concept is called transfer learning. It has been very popular in
modern days’ data science and machine learning applications, where you do not
always have a sufficient amount of labelled training data to train your model from
scratch.

Brief introduction to transfer learning
The concept of transfer learning is quite analogous to the human learning process.
If you know how to drive a car on Indian roads, you can quite easily adjust your
skill to driving on the roads of the USA. However, there are different driving rules
in the USA compared to India. For example, in India, we drive on the left side of the
road, whereas in the USA, they drive on the right side of the road. However, you
can adopt to these rules based on your primary driving skill. Similarly, in transfer
learning, a model trained to perform one task can transfer its knowledge to perform
other similar tasks. Transfer learning is particularly useful when you do not have
sufficient labelled data to optimally train your model. For example, suppose you
want to design a classifier to classify your own handwritten digits. But you have a
relatively smaller training dataset of your own handwriting containing around 500
examples. It might be difficult to optimally train a neural network from scratch on
such a smaller dataset. In one approach, you may think to train your network on a
public dataset like MNIST that contains thousands of handwritten digits. However,
you might not get the optimum performance on evaluating the model on your own
handwritten dataset as the images in the two datasets might have different properties
in terms of image resolutions, backgrounds, and writing styles. The problem can be
solved using transfer learning. You can take the weights of a neural network trained
on MNIST database and incrementally adjust a few of the weights on your small
training dataset. This not only saves training time but also mitigates the dependency
on application-specific datasets.

Deploying My First TinyML Application 153

In a deep CNN architecture, the convolutional layers in the first few layers usually
try to learn simple features like horizontal and vertical edges from the input images.
The shape-related information are learnt in the middle layers, and finally, the
detailed application-specific features are learnt in the later layers. By using transfer
learning, the pretrained model weights for the first few and middle layers can be
reused which are responsible for extracting generic features. We only modify the
weights of the deeper layers on the target dataset based on the actual application. In
summary, you can use transfer learning under the following scenarios:

• You do not have enough training data to train a model from scratch.
• You do not have sufficient infrastructure to train a model from scratch.
• There already exists a pretrained network for a similar application.

Implementing MobileNet using transfer
learning
In this project, we will reuse the weights of MobileNet pretrained on the ImageNet
database and apply transfer learning to train on CIFAR-10. Although CIFAR-10 has
sufficient training data, with transfer learning, we can get a good model with fewer
number of epochs that significantly reduces the training time. The ImageNet project
is a large visual database designed for object recognition research. The images in
ImageNet are organized according to WordNet hierarchy. All categories are derived
from an ontology root in WordNet, and most of them are subsets of physical entity.
There are more than 14 million hand-annotated images in more than 20,000 categories
in ImageNets. Since 2010, ImageNet has been organizing an annual contest asking
for software programs to classify objects and scenes.

Now, let us understand the model we are going to design for our application. We
will use the top layers of the pretrained MobileNet model. We will also define a
base model containing the final few dense layers that will be added to the pretrained
MobileNet. We will also apply quantization-aware training to reduce the model
precision, which will give us a smaller model for the target device.

In TensorFlow, we can directly load the MobileNet weights pretrained on the
ImageNet database using a single function call. See the following code:

>>from tensorflow.keras.applications import MobileNet

 pretrained_model = MobileNet(include_top=False, weights='imagenet',

 input_shape=(32,32,3))

154 Hands-on TinyML

Carefully note the preceding function arguments. We have loaded the weight values
pretrained on ImageNet. We have passed the input shape according to the images in
CIFAR-10. The parameter include_top = False indicates that we are not taking the
final layer of the pretrained MobileNet. We will define the final few dense layers as
per our application. Execute the command pretrained_model.summary() on Colab
to get the details of different layers of the MobileNet. The model has more than 3
million parameters. Output dimension of the final layer is (1, 1, 1024).

Now, we will define a function for the base model containing the final few layers. The
base model will be added to the pretrained MobileNet model to define our complete
model. Refer to the following code:

>>def base_model():

 model = Sequential()

 model.add(Dropout(0.3, input_shape = (1, 1, 1024)))

 model.add(Flatten())

 model.add(Dense(128,activation=('relu')))

 model.add(Dropout(0.3))

 model.add(Dense(10,activation=('softmax')))

 return model

As shown, the base model contains dropout and dense layers. The input shape has
to be equal to the shape of the output layer of the pretrained MobileNet. Since there
are 10 different classes in CIFAR-10, the final dense layer will have 10 nodes.

Creating an optimized model for a smaller
target device
Now, we will define the complete model. We will apply quantization-aware training
during training to get a compressed model. See the following code:

>>pip install -q tensorflow-model-optimization

 import tensorflow_model_optimization as tfmot

 pretrained_model.trainable = True

Deploying My First TinyML Application 155

 basemodel = base_model()

 q_pretrained_model = tfmot.quantization.keras.quantize_
model(pretrained_model)

 q_base_model = tfmot.quantization.keras.quantize_model(basemodel)

 original_inputs = tf.keras.layers.Input(shape=(32, 32, 3))

 y = q_pretrained_model(original_inputs)

 original_outputs = q_base_model(y)

 model = tf.keras.Model(original_inputs, original_outputs)

The baseline model is appended to the pretrained MobileNet to define the end-to-end
model. By setting pretrained_model.trainable = True, we ensure the pretrained
weights will be modified during training. If the parameter is set as False, only the
weights of the base model will be updated. The function tfmot.quantization.
keras.quantize_model() is individually applied on both the pretrained MobileNet
and the baseline models for creating an integer-based model. Summary of the final
model is shown in figure 6.2:

Figure 6.2: Model summary for image classification on CIFAR-10

The model has around 3.73 million parameters. Now, we will compile and train the
model on the training set of CIFAR-10. The categorical cross entropy loss function
will be minimized using an Adam optimizer, and the training will be done for 20
epochs. Ten percent of data from the training set is selected as a validation set to
evaluate the model performance after each epoch.

156 Hands-on TinyML

>>model.compile(loss = 'categorical_crossentropy', optimizer = 'adam',

 metrics = ['accuracy'])

 model.fit(trainX, trainY_one_hot, batch_size = 100, epochs = 20,

 validation_split = 0.1)

It will take around 20 minutes to train the model on Colab using GPU as a runtime.
By the end of 20 epochs, you can expect around 81% accuracy on the validation set.
Now, it is time to evaluate your model on the test set using the following code:

>>model.evaluate(testX, testY_one_hot)[1]

You will get a classification accuracy similar to what was achieved on the validation
set (around 81%). Now, we will quantize it into an integer-based model, convert
into the equivalent TFLite model and save it in our Colab workspace. Refer to the
following code.

>>converter = tf.lite.TFLiteConverter.from_keras_model(model)

 converter.optimizations = [tf.lite.Optimize.DEFAULT]

 tflite_model_qat = converter.convert()

 import pathlib

 tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

 tflite_model_file = tflite_models_dir/'model_qat.tflite'

 tflite_model_file.write_bytes(tflite_model_qat)

The preceding code will create a directory tflite_models in your workspace and
save the model model_qat.tflite in the directory. The compressed model has a size
of 3.65 megabytes. It is strongly recommended to download the TFLite file to your
host machine for offline access, as it can be deleted from Colab if the runtime is
disconnected. In order to download a file from Colab, right-click on it and select
Download. We will need this file later once we will deploy it on a Raspberry Pi for
inference.

Deploying My First TinyML Application 157

Evaluation of the model on the test set
Now, we have a training model. Let us execute it on the test set for performance
evaluation. Refer to the following code to print the TFLite model accuracy on the
test set:

>>tflite_model_file = 'tflite_models/model_qat.tflite'

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

 pred_list = []

 for images in testX:

 input_data = np.array(images, dtype=np.float32)

 input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 3)

 interpreter.set_tensor(input_index, input_data)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)

 prediction = np.argmax(prediction)

 pred_list.append(prediction)

 accurate_count = 0

 for index in range(len(pred_list)):

 if pred_list[index] == np.argmax(testY_one_hot[index]):

 accurate_count += 1

158 Hands-on TinyML

 accuracy = accurate_count * 1.0 / len(pred_list)

 print('accuracy = ', accuracy)

The model will yield around 81% accuracy on the test set. With this, we finish the
first part of our project of creating the TFLite model on Colab. In the following
sections, we will see how this model can be deployed on a Raspberry Pi for image
classification.

Introduction to Raspberry Pi
Raspberry Pi is a series of low-cost small Single Board Computers (SBC) popularly
used in scientific research in edge analytics, IoT, and also for educational purpose.
Originally developed by Raspberry Pi Foundation in association with Broadcom,
the first version of the device was launched in the year 2012. Raspberry Pi has a
Linux-based operating system, and it supports multiple programming languages
such as C, C++, and Python. It also hosts a number of input/output pins to
programmatically control external electronic components such as servo motors,
temperature sensors, and so on. That is why Raspberry Pi has been extremely popular
in physical computing, digital electronic system designing, edge analytics, and IoT
applications. Moreover, it has a full support to run sizable TensorFlow models. The
current generations of Raspberry Pi have the following versions, Zero, 1, 2, 3, and 4.

Throughout this book, we will use the Raspberry Pi 3 Model B+ to deploy our
projects. However, you should be able to run them on other Pi models as well, except
Pi Zero.

Figure 6.3 features the Raspberry Pi 3 Model B+:

Figure 6.3: Raspberry Pi 3 Model B+

Deploying My First TinyML Application 159

The Raspberry Pi 3 Model B+, shown in figure 6.3 has a dimension of 85.6 mm ×
56.5 mm, which is similar to the size of a credit card. It comes with a quad-core 1.4
gigahertz CPU and 1 gigabytes of RAM. However, you cannot just start working
with a Pi as soon as you have the device. You need to procure few other components
as well. Raspberry Pi does not contain any inbuilt memory for data storage. Hence,
you need a micro-SD card in order to store the operating system and all your
programs. You also need a monitor along with an HDMI cable to connect to your Pi
for display. You also need a USB keyboard and mouse as input devices. Finally, you
need a micro-USB cable and adaptor for the power supply. The recommended input
voltage is 5 Volt, and the recommended current is 2 Ampere.

Figure 6.4 features a labelled diagram of Raspberry Pi. Although the actual layout of
the board may vary in various versions of Raspberry Pi, you will mostly find all the
major components in all the versions:

Figure 6.4: Labelled diagram of a Raspberry Pi1

• Processor: Raspberry Pi 3 Model B+ comes with a powerful 1.4 gigahertz
quad-core ARM Cortex-A53 64-bit processor with 512 kilobytes of shared
memory cache. It has 1 gigabytes of RAM.

• SD card slot: Raspberry Pi does not have any inbuilt permanent memory. It
has a memory card slot where you need to insert a micro-SD card to store the
operating system and all other relevant files, including your programs.

1 https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started/2

160 Hands-on TinyML

• USB ports: There are 4 USB ports where you can connect peripheral devices
such as keyboard and mouse. You can also connect a USB mass storage
device to your Pi for file transfer.

• HDMI port: Raspberry Pi comes with an HDMI port to connect a monitor
for displaying the output.

• Camera module port: Raspberry Pi has a dedicated port to connect a camera
called the Pi camera. In the upcoming chapter, we will implement a project
where we will connect a camera to the Pi for real-time video capturing and
analysis.

• Power Supply: Raspberry Pi 3 Model B+ comes with a micro-USB connector
for an external power supply. It requires a steady 5V power supply.
Remember, Pi does not have any physical ON/OFF switch. The device turns
on as soon as you connect it to the power supply and turns off when it is
disconnected.

• Ethernet port: Raspberry Pi has an Ethernet port. It is also equipped with
Bluetooth and can be connected to a network via wireless LAN.

• Audio jack: You can connect a headphone.
• GPIO pins: A powerful feature of Raspberry Pi is the General-Purpose

Input/Output (GPIO) pins. These are programmatically configurable digital
ports where you can interface with various electronic components to your
Pi for acquiring data in real-time. The modern Raspberry Pi has 40 pins.
GPIO pins can be used to perform a variety of alternative functions. For
more details on GPIO pins, you are encouraged to go through the official
documentation of Raspberry Pi.

Getting started with the Pi
In this section, we will see how to set up a Raspberry Pi 3 Model B+. As mentioned
earlier, you cannot just work with a standalone Pi. You need a few more components,
which are as follows:

• A micro-SD card containing the OS.
• A micro-USB power cable.
• A monitor and an HDMI cable. If your monitor does not have an HDMI port,

you need a VGA-HDMI adaptor.
• USB keyboard and mouse.
• An internet connection, ethernet, or Wi-Fi.

Deploying My First TinyML Application 161

Installing the operating system
The Raspberry Pi has a dedicated Linux-based operating system called the Raspberry
Pi OS (previously known as Raspbian). You can download the OS from the official
website2. It provides you all the necessary instruction for installing the OS. You
are strongly recommended to download the latest version of the OS. Check for all
download options on the website. We recommend you to download the OS as an
imager format, which is easy to install to a micro-SD card from any host computer
or laptop. Your Pi will be fully operational as soon as you insert the micro-SD card
in the slot and power it on.

Open a browser on your computer and go to the official website of Raspberry Pi
to download the OS. Remember, your host computer needs to have the facility of
writing to an SD card. You need to insert the micro-SD card into the card reader
slot of the host machine, and it should be in FAT32 format. It is recommended that
your SD card has at least 4 gigabytes of free memory space. Once the imager is
downloaded, you need to install the application on your computer. It will guide you
to write the OS to the micro-SD card. Now, open the application. It will open the
window shown in figure 6.5.

Select Raspberry Pi OS (32 bit) as the operating system and the location of your
micro-SD card as your storage location. Clicking the Settings icon lets you set various
options, such as providing a username and password for your Pi, setting of the time
zone and geolocation, configuring the wireless LAN, and so on. Now click on the
Write button. The OS will start installing on your micro-SD card. It may take several
minutes to complete the installation.

Figure 6.5: Installing Raspberry Pi OS from the imager

2 https://www.raspberrypi.com/software/

162 Hands-on TinyML

Once the writing is completed, you will be prompted to eject the micro-SD card from
the host machine. Your SD card is now ready to be inserted into the Pi.

Setting up the Pi
Now it is time to set up the Pi. First, you need to insert the micro-SD card loaded
with the OS into the dedicated card slot of the Pi. Next, connect the peripheral
devices, such as the keyboard and mouse, to the Pi via USB ports. Finally, connect
the monitor to the Pi via an HDMI port. Now, insert the micro-USB cable into the
Pi for the power supply. For power supply, you can use an AC adopter or a power
bank or even use the USB port of a desktop. Remember, your Pi requires a steady
power supply of 5 Volt. You should connect all the peripheral devices to the Pi before
connecting to the power supply.

When you turn on the power supply for the first time, the Pi will do some internal
configuration and automatically restart. If everything goes fine, you can expect a
screen, as shown in figure 6.6, upon restarting.

Figure 6.6: Raspberry Pi desktop welcome page

Figure 6.6 shows the home page for one certain version of the OS. Depending upon
your installed version, you may see a different home page.

Deploying My First TinyML Application 163

Now, it is time to do some configurations. Follow the steps:
1. First, you need to connect to the internet. You can either use an ethernet cable

or connect it to a wireless network.
2. Click on the Raspberry Pi icon at the top left corner of your desktop.
3. Select Preference → Raspberry Pi Configuration. You will get a dialog box.
4. Click on Interfaces, as shown in figure 6.7. You will find a set of options.

From there, you need to enable SSH, VNC, SPI, I2C, and Serial Port.
Enabling SSH and VNC allows you to remotely access the Pi from another
desktop or laptop. SPI, I2C, and Serial port are various ways to communicate
with external electronic components such as the camera, OLED display, and
temperature sensors to the Pi.

5. Now, restart the Pi.
 For first-time users, you should update the software. Open a terminal by

clicking on the terminal icon located at the top of the desktop. Execute the
following commands. It will take some time to update the software.

 >>sudo apt-get update

 >>sudo apt-get upgrade

Figure 6.7: Configuring your Raspberry Pi

164 Hands-on TinyML

Remotely accessing the Pi
In the previous section, we have successfully set up the Raspberry Pi. We have
connected a number of input/output devices, such as keyboard, mouse, and monitor
to the Pi, to act as a standalone system for computing. However, Raspberry Pi is
primarily used as a low computing edge device for low-powered, 24 × 7 processing.
The addition of extra peripheral devices consumes more power. In practical
applications, Raspberry Pi devices are often not connected to any input/output
peripheral devices, and they are controlled remotely. There are various ways of
remotely accessing a Raspberry Pi. In a simple way, Raspberry Pi can be controlled
from an external device using the secured shell (SSH) protocol.

SSH is a secured client-server protocol. The remote machine you need to connect, and
control should have the SSH server installed. On the other hand, your host machine
should have an SSH client. When the client machine connects to the server over SSH,
it can be controlled as a local machine from the client to execute commands remotely.
Details of the SSH protocol are beyond the scope of this book. In short, the SSH server
has a dedicated Transmission Control Protocol (TCP) port over which it monitors
the network waiting for an SSH client to connect. The client first needs to establish a
secured connection by issuing SSH commands. It requires an authentication process.
Once the connection is established, you can control the remote machine.

Make sure your Raspberry Pi and the host machine are in the same network. In
order to connect to a Raspberry Pi, you need to enable SSH from the Raspberry Pi
configuration window. Refer to figure 6.7 for details. The SSH client is preinstalled
on machines having Linux and macOS X. However, you need to install the client
separately on Windows-based computers. You can download and install PuTTY,
which is a free SSH and telnet client for Windows. Execute the following command
in a terminal of the host machine in order to initiate a remote connection with the Pi.

>>ssh [username]@[server_ip_hostname]

You need to know the username and the IP address of the Pi. Once the command is
executed, you will be prompted to enter the password for the Pi. Once the verification
is done, a secured connection will be established, and you will get control of the Pi
on your host machine. Type exit on the command line, and the remote connection
with the Pi gets disconnected.

Deploying My First TinyML Application 165

Deploying the model on Raspberry Pi to
make inference
So far, we have set up our Pi and installed the OS. We have also seen how a Pi can be
accessed from a remote machine to execute commands. Now, we will set up our Pi
to classify images based on the TensorFlow Lite model we created using MobileNet.
Although Raspberry Pi has enough computational power, you still cannot effectively
train very large neural networks on it. It is commonly used as a low-powered edge
device to make inferences. We train our model on a more powerful machine having
accelerated hardware like GPU and TPU and convert it into an optimized TFLite
model to make on-device inferences.

As expected, you need to install a few software on your device to run a TFLite
model. As mentioned earlier, Raspberry Pi supports Python programming language,
and the Python interpreter is already installed with the Raspberry Pi OS. Open a
terminal in your Pi and type the following command, as shown in figure 6.8, to check
the version of Python:

>>python –-version

Figure 6.8: Checking the Python version in Raspberry Pi

166 Hands-on TinyML

Figure 6.8 shows the Python version installed on the Pi. The recent Raspberry Pi
OS comes with Python 3. Make sure your Pi contains the similar version of Python
which you used to train your model. You also need to install a few more libraries.
The NumPy library is preinstalled in Pi. We need the Python Imaging Library (PIL)
for reading image files, which is also preinstalled.

Open a terminal on Pi and type Python; you will be inside the Python console, as
shown in figure 6.9:

Figure 6.9: Opening Python console in Raspberry Pi

You can execute all your Python commands and scripts here. Type the following set
of commands to check the version of NumPy and PIL library installed in your Pi.

>>>import numpy

>>>print(numpy.__version__)

>>>import PIL

>>>print(PIL.__version__)

Deploying My First TinyML Application 167

As shown in figure 6.10, the version of NumPy and PIL installed in the Pi will be
printed in the console.

Figure 6.10: Checking the version of NumPy and PIL library

Finally, we need to install the TensorFlow library. Remember, our only purpose
here is to make on-device inference. We are not going to train a model on the Pi.
Hence, we are not going to install the full TensorFlow. Instead, we will only install
tflite-runtime, the official TensorFlow Lite library for running TensorFlow models
on mobile devices and embedded platforms. It enables on-device inference on
smartphones powered by Android, iOS, and also Linux-based SBCs like Raspberry
Pi.

The easiest way of installing tflite-runtime on the Pi is by using the pip command.
Open a terminal and type the following command:

>>pip install tflite-runtime

The necessary libraries will be installed. Now, open the Python console and type the
following command to access the tf.lite.Interpreter class.

>>>from tflite_runtime.interpreter import Interpreter

If you have successfully installed tflite-runtime, the command will be executed
without showing an error. As we know, an instance of Interpreter is required to
make inferences using the TFLite model.

Now, we will write a Python script to classify an offline image from the CIFAR-10
database on Raspberry Pi using the TensorFlow Lite model, model_qat.tflite that
we created earlier in the chapter. Before we do so, let us first create some sample
image files from the test set of the CIFAR-10 database and save them in JPG format.
The images will be our test files to evaluate the model.

168 Hands-on TinyML

Go back to the Colab project and execute the following code. It will load the CIFAR-10
database once again; select 10 random samples from the test set and save them in
JPG format in the workspace.

>>from numpy import random

 from PIL import Image

 (trainX, trainY), (testX, testY) = cifar10.load_data()

 for i in range(10):

 num = random.randint(0, len(testX))

 im = Image.fromarray(testX[num])

 im.save('sample' +str(i+1)+'.jpg')

You need to download these images from Colab Workspace to your host computer.
Now, let us write the Python script to make an inference. The script is very similar
to the earlier inference scripts we created in Chapter 5, Model Optimization Using
TensorFlow. Let us import the necessary libraries first.

>>import sys

 import numpy as np

 from PIL import Image

 from tflite_runtime.interpreter import Interpreter

The script we are going to write will be executed on the command line of Pi. It will
take a single input argument, the full path of the image that we want to classify. To
make an inference, we first need to create an instance of the Interpreter class using
the TFLite model and allocate the tensor. Refer to the following code:

>>tflite_model_file = 'model_qat.tflite'

 interpreter = Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

Deploying My First TinyML Application 169

Now, we will read the image file passed through the command line and do some
pre-processing. We will resize the image according to the images in the CIFAR-10
database, which is, 32 × 32. This step is required so that we can evaluate our model
on images taken from other sources. Next, each pixel value will be divided by 255
for normalization. Refer to the following code:

>>Im = Image.open(sys.argv[1])

 Im_resized = Im.resize((32, 32))

 Im = np.asarray(Im_resized)

 Im = Im/255

Next, the image will be reshaped according to the input of the model, that is, a tensor
of shape (1, 32, 32, 3). We will allocate tensor for input and output. Finally, we will
call the method Interpreter.invoke() to make the inference.

>>input_data = np.array(Im, dtype=np.float32)

 input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 3)

 interpreter.set_tensor(input_index, input_data)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)

 prediction = np.argmax(prediction)

The output of the preceding code segment will be the numeric class label which needs
to be mapped to the string value of the actual class. We will define a list containing
the class names ordering as per the assigned numerical values. Then we will call the
particular list element based on the prediction label. Refer to the following code:

>>labels = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog',
'Frog', 'Horse', 'Ship', 'Horse']

 # get the predicted label as a string

 print(labels[prediction])

170 Hands-on TinyML

So, the complete inference script is as follows:

Import sys

import numpy as np

from PIL import Image

from tflite_runtime.interpreter import Interpreter

labels = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog',
'Horse', 'Ship', 'Horse']

tflite_model_file = 'model_qat.tflite'

interpreter = Interpreter(model_path=tflite_model_file)

interpreter.allocate_tensors()

input_index = interpreter.get_input_details()[0]['index']

output_index = interpreter.get_output_details()[0]['index']

Im = Image.open(sys.argv[1])

Im_resized = Im.resize((32, 32))

Im = np.asarray(Im_resized)

Im = Im/255

input_data = np.array(Im, dtype=np.float32)

input_data = input_data.reshape(1, input_data.shape[0], input_data.
shape[1], 3)

interpreter.set_tensor(input_index, input_data)

interpreter.invoke()

prediction = interpreter.get_tensor(output_index)

Deploying My First TinyML Application 171

prediction = np.argmax(prediction)

print(labels[prediction])

Now, open a text editor on your host computer and copy and paste the preceding
script. Make sure the code indentation is properly maintained. Now, save the file
and name it as image_classifier.py. You need to transfer the following files to the
Pi.

• The script, image_classifier.py
• The model file, model_qat.tflite
• The JPG files you created for testing your script (sample1.jpg, sample2.jpg,

and so on)

You can transfer the preceding files to the Pi using a USB mass storage device.
However, if the Pi is not connected to any input/output peripheral devices such
as a keyboard, mouse, or monitor, we can rely on SSH. Using SSH commands, we
can remotely access the Pi from a host computer, transfer all the necessary files, and
execute the Python script for image classification.

Secure Copy Protocol (SCP) is a file transfer protocol based on SSH that provides
secure file transfer between two machines connected over the network. You can
either transfer a file from your host machine to a remote server or can copy a file
from a remote server to your local machine. SCP runs on port 22. While transferring
data, both the files and the password are encrypted. SCP commands are included
in computers running Linux and macOS X. However, you need to install it on
Windows. If you have installed PuTTY, it includes PSCP, an SCP for Windows. On
the Pi, you just need to ensure that SSH is enabled.

Execute the following command on the terminal of your host machine in order to
send a file from your host computer to the Pi:

>>scp [source_file] [username]@[server_ip_hostname]:[dedstination_
location]

Now, let us make an inference on the Pi remotely. Perform the following steps one
after another:

1. Power on the Pi and make sure it is connected to the network. Make sure
your Pi and host computer are on the same network.

2. On your host machine, open a terminal and access the Pi remotely using the
IP address. Suppose, in our case, the username is pi and the IP address is
192.168.29.38. Then execute the following command on the host machine:

 >>ssh pi@192.168.29.38

172 Hands-on TinyML

3. You will be prompted for the password for your Pi. On entering the correct
password, you will get access to the Pi from the host machine. In the Pi,
we will create a directory, image_clasification, under Desktop. Execute the
following command on the host machine:

 >>mkdir Desktop/image_classification

4. We will store all our files in this directory.
5. Now, we need to transfer the Python script, the TFLite model file, and the

test image files to the Pi. Open another terminal on your host machine and
type the following command to transfer the python script, image_classifier.
py:

 >>scp image_classifier.py pi@192.168.29.38:~/Desktop/image_
classifier

6. You will be again asked for the password. Upon verification, the Python
script will be transferred to the Pi and saved in the directory. Follow the
above procedure to transfer the model file and the test image files.

7. Once all the necessary files are successfully transferred, we can make an
inference. Go back to the previous terminal on the host machine which is
accessing the Pi using SSH. First, go to the directory image_classiifer by
issuing the following command:

 >>cd Desktop/image_classifier.

8. Now, execute the following command to run the Python script.
 >>python image_classifier sample1.jpg

9. It will take sample1.jpg as input, run the inference script and print the
predicted class name on the terminal. You can test the script on another image
by changing the filename and check the performance. Since, our model has
reported around 81% classification accuracy on the test set, you can expect
most of the test samples to be correctly predicted.

10. Finally, you can check the performance of the model on images downloaded
from other sources as well. You can download or collect sample color images
of various objects upon which the model has been trained, such as airplanes,
cars, dogs, ships, and so on, and check the model performance. Do not worry
about the dimension of the images, as the Python script will readjust them
into 32 × 32 pixels. You will be surprised to see that the model can correctly
classify many of those images downloaded from external source, like the one
shown in figure 6.11. Make sure that the target object is clearly visible in the
images used and they do not have a very complex background.

Deploying My First TinyML Application 173

Figure 6.11: Sample test images from an external source to be tested by our classifier

Conclusion
Congratulations! You have successfully deployed your first TinyML application on
a Raspberry Pi. The main objective of this chapter was to get the feeling of creating
a real-world TinyML application from scratch and deploying it on a commercial
edge device. We have created a deep learning model for image classification and
optimized it to run on low-powered edge devices. In this chapter, we have learnt
about MobileNet, a highly optimized, powerful CNN-based deep neural network
architecture for mobile devices and edge devices. MobileNet exploits depthwise
separable convolution that performs the convolution operation with fewer
mathematical operations. Remember that the target devices such as smartphones,
Raspberry Pi, or microcontrollers often do not have sufficient hardware resources
to train large deep learning models. We have trained our model on Colab using
the power of GPU and CPU and then converted the model into the equivalent
TFLite model. The model has been later used to classify offline images on the Pi. In
this chapter, we have created a fairly simple application to begin with developing
TinyML. In the upcoming chapter, we will implement a more complex and practical
project, identifying a person from a live video feed captured using a camera.

Key facts
• TensorFlow models can be deployed on smaller edge devices like Raspberry

Pi or microcontrollers to make inferences.
• Neural network models are primarily trained on a powerful computer. The

edge devices are meant to make inferences.
• MobileNet is a CNN structure specially designed for low-powered mobile

devices.

174 Hands-on TinyML

• MobileNet exploits depthwise separable convolution, an efficient way of
performing convolution with reduced mathematical operations.

• Transfer learning focuses on applying the knowledge gained while solving
one task to a related task.

• Transfer learning is often useful if we do not have enough data to train a
model.

• Raspberry Pi is a Single Board Computer for IoT applications
• Raspberry Pi has a dedicated Linux-based operating system, it can run

Python scripts. You can even execute TensorFlow models on it.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In Chapter 6, Deploying My First TinyML Application, we built our first TinyML
application for image classification. We used the pretrained MobileNet architecture
to define our model. Later in the chapter, the model was deployed on Raspberry Pi,
a commercial tiny edge device for image classification. We used the TensorFlow Lite
library for the compression and optimization of the model. Although our machine
learning model was trained on the publicly available CIFAR-10 database, it could
successfully detect similar types of images from other sources as well. The objective
of the previous chapter was to learn the different stages involved in creating an
end-to-end TinyML application through a practical example. In this chapter, we will
create a slightly complex but more practical application, identifying a person in real-
time from a facial image extracted from the live video stream recorded by a camera.
This application will also be deployed on the Raspberry Pi.

On-device person identification has plenty of applications in our everyday life. We
all know the importance of user privacy and security in the modern digital world.
Biometric-based user authentication has become immensely popular in modern
cyber-physical systems. In biometric authentication, some unique signatures of
your physical properties are used to automatically identify yourself in order to give
you certain access to some information and facilities which are solely owned by

Chapter 7
Deep Dive into

Application
Deployment

176 Hands-on TinyML

you, therefore, restricting the access of others. Fingerprint, retinal and facial images
are particularly used for biometric verification purposes. These features are unique
for every person. The key advantage of biometric-based authentication is they are
easy to use but difficult to imitate. You do not need to remember a password to
authenticate yourself. Take the example of your smartphone. Although one can
unlock the phone with a passcode, many of us still prefer to unlock our device by
some type of biometric verification like fingerprint scanning or face recognition. By
this, it is ensured that an unauthorized person cannot have access to our personal
device. Among various biometric techniques, authentication by face recognition is
particularly popular. It is more unobtrusive compared to fingerprint or retina-based
authentication. Instead of placing the finger on the sensor for scanning or focusing
on a camera that scans the retina, one just passively needs to look at the camera to
get identified.

Now let us understand how biometric recognition works. We can take the example of
user identification via fingerprint scanning on the smartphone to unlock the device.
It is a classic example of applied machine learning, which requires a dedicated on-
device training process. Recall, when you set up your phone for the first time, you are
asked to set up your fingerprint to use it as an identification system to unlock your
device. You are prompted to place your finger at different angles on the dedicated
fingerprint sensor of your phone. This is nothing but providing data to the system to
train. An algorithm runs in the backend that extracts the relevant features from the
fingerprint such as loops, whorls, and arches in order to train a model that is specific
to your finger. Of course, the training process is quite different because you need
to train a model on a small amount of data. Once your phone is set up, each time
you place your finger on the sensor, it checks the similarity score of the features to
identify you in order to unlock your device.

In this chapter, we will create a lightweight end-to-end application for on-device
face recognition and deploy it on Raspberry Pi. However, the implementation of the
project will be slightly different. Unlike previous examples, this project will be entirely
implemented on the Pi, including the training. We need to remember a few things
in mind before implementing the project. The on-device inference latency needs to
be very low so that the recognition happens in real-time. Moreover, our application
should be robust enough to deal with various ambient lights and backgrounds.
Finally, if you are the target person for recognition, no other person should be
recognized as you by the system. We will discuss more about these challenges when
we start implementing the project. Once developed, the face-recognition application
can be used as a user authenticator to perform a number of interesting projects. You
can create your own novel applications and can deploy them in your everyday life.
For example, you can create an application for automatically turning on a smart

Deep Dive into Application Deployment 177

light in your room as soon as you are detected by the camera installed at the room
entrance, which communicates with the Pi. Similarly, using the face recognition
application at the entry point, you can design an automated system that detects
the authorized persons and automatically grants their access to a premise while
stopping others from entering.

Structure
In this chapter, we will discuss the following topics:

• System requirement
• The face recognition pipeline
• Setting up the Raspberry Pi for face recognition
 o The Raspberry Pi camera module
 o Installing the necessary libraries
• Implementation of the project
 o Data collection for training
 o Model training
 o Real-time face recognition

Objectives
In this chapter, we will create an end-to-end application for on-device person
recognition from a live video stream on a Raspberry Pi. The application will capture
a video stream using a camera connected to the Pi, analyze the image frames to
recognize the target person as soon as he/she appears in front of the camera. Similar
to the previous project, this project will also be implemented in Python. However,
the implementation will be slightly different. In previous projects, we trained our
machine learning models on a different machine hosted on the cloud, not on the Pi.
To be more specific, our neural network models were trained and optimized using
the Colab notebook powered by the enormous infrastructure provided by Google.
The resulting model was used in the Pi only to make inferences. However, in this
project, we will perform both model training and recognition on the same device.
Take the example of the image classification project we implemented in Chapter 6,
Deploying My First TinyML Application. The training was a one-time job. We collected
hundreds and thousands of images from a public dataset to train a neural network.
In such applications, we need to retrain rarely only if we want to improve the model
performance or decide to add a new type of object for detection. The classifier
network was large and complex with thousands of trainable parameters; hence, it

178 Hands-on TinyML

was not possible to train on the Pi. However, the scenario is different in the case of
person identification. The training is very much specific to the person you want to
detect. Here, we need to train on a much smaller dataset, as getting a large number
of training samples for one person is not feasible. Moreover, you may frequently
need to add/remove a person in order to update the list of target persons to be
recognized by the system. Hence, training/retraining can be more frequent. That is
why we prefer to do the training on the Pi itself.

Another key differentiator comes in getting the data. In all previous chapters, we
relied on publicly available datasets for training. However, as you can understand,
for face recognition, we need to create our own dataset for every single person
we want to recognize. In all previous examples, we used large neural networks,
particularly Convolutional Neural networks (CNN), to design the machine learning
model. In this project, we will use a much simple approach. Although complex, deep
neural network architectures exist for face recognition, they can be difficult to train
on the Pi.

Face recognition is a complex task that involves lots of complex image processing and
computer vision algorithms at various stages for detection and recognition of facial
properties. Rather than implementing every single image processing algorithm from
scratch, we will use readily available Python libraries to efficiently perform most of
the image processing operations, such as face detection from an image, background
separation, relevant feature extraction, model creation, and so on, and primarily
focus on implementing the end-to-end pipeline. We will also focus on executing the
project close to real-time for a better user experience.

System requirement
In this project, we are dealing with real-time image processing on an input video
stream. Hence, we must need a camera that is compatible with the Raspberry Pi. We
will use the Raspberry Pi camera, an off-the-shelf camera module specially designed
for the Pi. Moreover, since we need to collect our own data in order to train on them,
we will also require the standard input/output peripheral devices to be connected
to the Pi. This will be required for visualization aspects.

The following components are required to implement this project:
• Raspberry Pi 3 Model B+
• Raspberry Pi camera module
• The micro-USB power cable for the Pi
• AC power adopter or a power bank for power supply

Deep Dive into Application Deployment 179

• Standard peripheral input/output devices such as a monitor with HDMI
cable, keyboard, and mouse

The face recognition pipeline
A high-level architectural diagram for the face recognition pipeline is shown in figure
7.1. Look at the different blocks in the pipeline carefully for a better understanding
of different steps involved in the project. Like any machine learning application, this
project has two distinct parts: training and testing. The training is an offline process
to obtain a learning model that is specific to the target persons you want to recognize
by your system. Once we get the necessary image files for training, we will extract
the relevant features to train the machine learning model. We will use the model
to recognize the person in real-time. The testing process has some similarities to
training, but it will be a real-time operation. We will extract image frames from the
live video stream captured by the camera and compute the same set of features we
did during training. The features, together with the model, will determine whether
the target person is present in the image frame or not. In case you want to update the
list of persons you want to recognize, you need to retrain your model.

Figure 7.1: The face recognition pipeline

As we all know, getting the right data is the key thing to train any machine learning
model. In all previous projects, we trained our models on large public datasets. In
this project, we need a good number of frontal facial images of the person we want
to recognize. As expected, we cannot get a readily available public dataset for that.

180 Hands-on TinyML

Hence, we will collect a small dataset of our own for training. We will implement
a Python script to capture frontal facial images using a Pi camera connected to the
Raspberry Pi to collect the relevant training data. Once the data is collected, we
will process it for relevant feature extraction in order to create our learning model.
We will use standard open-source libraries for most of the image-processing tasks,
which will be duly discussed later. Once the model is created, we will use it for our
face recognition task.

Now, let us understand the process involved in testing where we actually perform the
face recognition task in real-time. The Pi camera is programmed to capture video in
real-time. We will extract image frames from the video stream inside an infinite loop
and analyze each frame. We will perform two tasks in the face recognition process.
Our first job will be to detect whether a human face is present in the extracted frame.
If a human face is detected, then only we will go to the next step to determine whether
the detected face belongs to the target person based on a similarity matching of the
features. This entire processing needs to be very close to real-time in order to get a
better user experience.

Setting up the Raspberry Pi for face
recognition
In the previous section, we have briefly discussed about the face recognition pipeline.
Now, we will start implementing the actual project. A detailed explanation of all the
underlying algorithms responsible for face recognition is beyond the scope of this
book. As mentioned earlier, rather than implementing every single image processing
algorithm involved in the application, we will use some highly optimized open-
source libraries to perform most of them and primarily focus on implementing the
end-to-end pipeline. We will start implementing the project by installing the camera
module, followed by installing the necessary software libraries.

The Raspberry Pi camera module
The Raspberry Pi camera is a commercially available low-cost, high definition digital
camera module board that can capture good-quality images when connected to the
Pi. We will use the 5 megapixel camera, which is capable of recording good quality
video. Although the recorded image quality is inferior to the USB-based Webcam, it

Deep Dive into Application Deployment 181

can be reliably used for various applications, including face recognition. Figure 7.2
features the Raspberry Pi camera module as it is and when it is connected to the Pi:

Figure 7.2: The Raspberry Pi camera module (left) and when connected to the Pi (right)

The camera module is shown in figure 7.2 (left). We strongly recommend the readers
procure the Raspberry Pi camera module in order to follow the rest of the chapter
detailing the project implementation. As shown, the camera module has two parts,
the green board containing the camera lens and the necessary electronic circuitry
for image capturing and the white ribbon for connecting the camera module to the
Raspberry Pi board. Connecting the camera to the Pi is fairly simple. As mentioned in
the previous chapter, the Raspberry Pi comes with a camera port located in between
the audio port and the HDMI port, as shown in figure 7.2 (right).

Do the following steps to connect the Pi camera. First, power off the Pi. Next, pull
up the plastic clip covering the camera port of the Raspberry Pi and gently insert
the ribbon of the camera module inside. Make sure that the blue end of the ribbon is
facing toward the USB port and the LAN port of the Raspberry Pi device, as shown
in the preceding figure. Now, connect the monitor, keyboard, and mouse with the Pi.
Finally, power on the device.

Once powered on, you first need to configure your Raspberry Pi in order to detect
the camera. This is a one-time job. Open a terminal on the Pi and type the following
command:

>>sudo raspi-config

You will be prompted by the following window shown in figure 7.3. We need to
perform the following steps:

182 Hands-on TinyML

Figure 7.3: GUI on entering rsapi-config command on Raspberry Pi terminal

Select Interface Options (the third option in the figure) from the list, and the following
window shown in figure 7.4 will appear:

Figure 7.4: Selecting raspi-config under Interface Options

Deep Dive into Application Deployment 183

Select the first option from the list to enable the camera. The following window,
shown in figure 7.5, will appear:

Figure 7.5: Enabling the camera

Select Yes to enable the camera. Now, restart the Pi to fully enable the camera. Once
restarted, type the following command in a terminal to check the camera status.
Refer to figure 7.6:

>>vcgencmd get_camera

Figure 7.6: Checking camera status on Raspberry Pi

184 Hands-on TinyML

If you find the two parameters supported = 1 and detected = 1 as the command
output, then your camera is successfully configured. Otherwise, the camera has not
been detected. Make sure that the white ribbon in the camera module is properly
connected to the Pi. If everything goes well, type the following command to test the
camera:

>>raspistill -o test.jpg

It usually takes few seconds to turn on the camera. Once the camera is on, a display
window will open, showing the camera preview. The window will remain open for
few seconds and close automatically. The last frame of the video will be saved in the
home directory of your Pi with a file name test.jpg.

Installing the necessary libraries
Now, we have successfully set up the Raspberry Pi camera. Next, we need to install
the necessary software packages to implement the project. We will first install the
picamera package. This is a Python library for the Raspberry Pi camera module
containing optimized APIs to efficiently capture images and videos. Open a terminal
on your Pi and enter the following command to install the package:

>> sudo apt-get install python3-picamera

Wait till the package is completely installed. Next, we will install OpenCV. It is a large
and popular open-source library for image processing and computer vision. It contains
more than 2,500 highly optimized algorithms related to image and video processing
operations. Apart from that, there are standard libraries in OpenCV to detect objects
such as human faces from images and videos. OpenCV is highly scalable and has
an interface for all major programming languages such as C++, JAVA, and Python
and supports almost all major operating systems such as Windows, Linux, macOS
X, and also the Raspberry Pi OS. Enter the following command on the terminal to
install OpenCV for Python:

>>sudo apt install python3-opencv

Now, we will install another package called imutils. It contains a series of OpenCV
convenience functions for doing some basic image processing operations like image
translation, rotation, resizing, and so on. You must install OpenCV first in order to
install the imutils package. Enter the following command in the terminal:

>>pip install imutils

Next, we will install a Python package containing readily available optimized
libraries for face recognition. The library is built with advanced machine learning

Deep Dive into Application Deployment 185

algorithms with a benchmark face detection accuracy of 99.38%. Using the library,
you just need few lines of codes with high level of abstraction to easily detect and
recognize human faces from an input image. Type the following command to install
the package:

>>pip install face-recognition

Finally, enter the following command that will install the required dependencies:

>>sudo apt-get install libatlas-base-dev

With these, you have installed all the necessary libraries and dependencies for the
project. Restart your Pi to make everything work.

Implementation of the project
We have successfully set up our system in the previous section. Now, it is time to
implement the actual project. The entire face recognition task can be broadly divided
into the three following parts:

• Data collection for training
• Model training
• Real-time face recognition

We will discuss each part of the project in some detail for implementation.

Data collection for training
As we know, data collection is the most important job in machine learning to train
a good working model. In the previous examples, we developed machine learning
models for the classification of handwritten digits or various image objects such
as dogs, cats, cars, and so on. For those applications, we have the availability of
rich open-access datasets such as MNIST or CIFAR-10. For this project, our training
dataset requires facial images of the person we wish to recognize by the face
recognition system. Hence, we will create a small dataset containing few headshot
images of the target persons for training. A headshot can be defined as a portrait
photograph of the frontal face. As part of this project, we will implement a Python
script for data collection. It will capture a video using the Pi camera. Whenever a
certain key is pressed by the user, the video frame at that moment will be captured
and stored in the file system as a digital image.

Now, let us understand the script. It will be executed on the command line. You need
to enter the name of the person as an input argument for whom you wish to collect

186 Hands-on TinyML

the data. Now, let us write the script. We will start by importing the libraries:

>>import os

 import sys

 import cv2

 from picamera import PiCamera

 from picamera.array import PiRGBArray

 from time import time

We need one more step. We will create a parent directory dataset in the same path
where the Python script is located. The name of the persons we want to collect the
data for will be obtained by the script from the input argument provided by the user
in the command line, and accordingly, a new directory will be created under the
parent directory. All headshots for that person will be stored under that directory.
Refer to the following code:

>>name = sys.argv[1]

 # get parent directory

 parent_path = os.getcwd()

 # create the directory for image storing

 path = os.path.join(parent_path+'/dataset', name)

 isExist = os.path.exists(path)

 print(isExist)

 if isExist==False:

 os.mkdir(path)

In this preceding script, the person’s name is obtained from the command line and
stored in the variable name. Next, we check whether a directory having the same
person’s name already exists or not and create it accordingly.

Now, we will start capturing the video stream using the Pi camera. We will use the
readily available functions from the PiCamera module. See the following code.

>>cam = PiCamera()

 cam.resolution = (320, 240)

Deep Dive into Application Deployment 187

 cam.framerate = 10

 rawCapture = PiRGBArray(cam, cam.resolution)

First, we create a Picamera object. We need to mention the video resolution and the
frame rate to capture the raw stream. The function PIRGBArray() defines a three-
dimensional RGB NumPy array for camera capture. We provide the video resolution
as 320 × 240, which is good enough to run the face recognition task in real-time on
the Pi. In general, a higher video resolution ensures a better image quality which is
good for face recognition, but it comes with a penalty of more computational load.
The video frame rate is given 10 frames per second.

Now, we will write the main loop. It will call an infinite while loop to capture image
frames from the continuous video stream. When executed, a new window is created
displaying the camera preview. In each iteration within the loop, the program will
wait for 1 millisecond for a key press. If the user presses the space key, it saves the
current frame as a JPEG image in the directory corresponding to the name of the
person. We make a system call to get the current time in milliseconds and use the
same to assign a unique filename to each of the JPEG images stored in the directory.
On hitting the escape key, the program exits from the loop and closes all windows.
The code segment is shown as follows:

>>while True:

 for frame in cam.capture_continuous(rawCapture, format='bgr',
use_video_port=True):

 image = frame.array

 cv2.imshow('Press Space to take a photo', image)

 rawCapture.truncate(0)

 k = cv2.waitKey(1)

 #rawCapture.truncate(0)

 if k%256 == 27: # ESC pressed

 break

 elif k%256 == 32:

 # SPACE pressed

188 Hands-on TinyML

 img_name = path+'/sample_{}'.format(int(time() * 1000)) +
'.jpg'

 #img_name = 'image_{}'.format(img_counter) + '.jpg'

 cv2.imwrite(img_name, image)

 print('{} written!'.format(img_name))

 #img_counter += 1

 if k%256 == 27:

 print('Closing... ')

 break

 cv2.destroyAllWindows()

Now, we have the entire script. Open a text editor in the Pi and copy and paste
all the code segments. Be careful to maintain the indentation while creating the
script. Save the file as headshots_data_collection.py. Create a folder named Face_
Recognition_Project under the home directory and paste the Python file there.
This is your main project directory. Make sure that the parent directory, dataset is
also located in the main project directory parallel to the Python script.

Now, open a terminal on the Pi and get into the Face_Recognition_Project directory
using the cd command. Then, enter the following command to execute the script.

>>python headshots_data_collection.py person_A

Replace the string person_A with your name if you wish to collect your own data. It
will take a few seconds to turn on the camera. Wait for the display window to open,
and the video preview will appear. Now, gently hold the camera with the white
ribbon and bring it close to your face to capture headshot images. An ideal headshot
should be similar to the photographs used in the identity cards. You should directly
look at the camera, and your face should cover 70%–80% of the frame. Make sure
that your frontal face is clearly visible. The camera should not be too close or far
away from the face. Adjust your position based on the camera preview. Make sure
the room where you are sitting has sufficient ambient light, and you should have a
clearly separable background.

Stay still in the position and hit the space key while looking at the camera to
capture and save a headshot image. Now, go back to the dataset directory. You

Deep Dive into Application Deployment 189

will find a directory of your name where the image file is stored. Follow the same
procedure to capture 10–15 headshot images. For a better recognition accuracy, you
should introduce some variations in the captured image by slightly bending your
face towards your right and left during the capture. You can also have different
backgrounds while capturing the data. When you have enough data, press the escape
key to close the script.

Now, you can start training the model that will be specifically for you. Additionally,
you can follow the same procedure to take another person’s data so that your system
can recognize two different persons at the same time.

Model training
In this section, we will learn how to train a model on the captured data for face
recognition. The training is a one-time process. We only need to retrain only if you
need to add or remove a person or have new training images to improve the model
accuracy. We will primarily use the OpenCV and the face_recognition library to
implement the training. Our training code performs the following operations:

• Get the input images from the training directory one-by-one and do some
basic pre-processing.

• Locate the faces in each image using the face_recognition library.
• Compute a list of 128-dimensional encoding for each unique face in the

image. These are used as discriminating features for the person.
• Dump the encoding in a pickle file which is the training model for our case.

Now, let us start implementing the code. Here are the required libraries:

>>from imutils import paths

 import face_recognition

 import pickle

 import cv2

 import os

Next, we will access the directory where the training images are stored. We will
define two lists, one for storing the names of different persons for training and the
other for storing the encodings (features) computed for each face.

>>datapath = list(paths.list_images('dataset'))

190 Hands-on TinyML

 Names = []

 Encodings = []

Now, we will start processing the training images in a loop. Refer to the following
script:

>>for (i, data) in enumerate(datapath):

 name = data.split(os.path.sep)[-2]

 image = cv2.imread(data)

 rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 boxes = face_recognition.face_locations(rgb, model='hog')

 # compute the facial embedding for the face

 encodings = face_recognition.face_encodings(rgb, boxes)

 # loop over the encodings and append to the list

 for encoding in encodings:

 Encodings.append(encoding)

 Names.append(name)

Let us understand what is happening inside the loop. First, we access the training
images for each person. One image file is read at a time inside the loop. We use the
imread() function available in the OpenCV module to read an image. By default,
OpenCV reads the color channels of an image in the order of Blue, Green, Red
(BGR). We need to convert it into an RGB image for further processing. Next, we
call the face_locations() method available in the face_recognition library that
identifies and locates all human faces in the image. The function uses the “hog” model
for face recognition. It is to mention that the library also supports more complex face
recognition algorithms via CNN. Although slightly more inaccurate than the CNN-
based approach, the hog model is extremely lightweight, and hence, is particularly
suitable for our application.

Now, let us briefly understand how the algorithm works. The hog model uses a
histogram of oriented gradient (hog) and a linear support vector machine (SVM)

Deep Dive into Application Deployment 191

classifier for face detection. The hog is popularly used in object detection in computer
vision. It works in the following way:

In hog, an input image is first divided into small connected cells. Then it computes
the histogram for each cell. It then normalizes the result using a block-wise pattern,
and returns a descriptor for each cell. A histogram can be assumed to be similar to
a bar graph that groups the image pixel values into different ranges. When plotted,
the histogram comprises connected bars of different heights. The horizontal axis
of each bar represents different ranges of pixel values, and the height of the bar
represents how many pixels are falling in that range. With histogram, we can
estimate the density of the pixel values in the image. The feature vector is computed
by combining the histograms for all the cells, which is then used for deciding the
presence or absence of faces in the image using an already trained SVM classifier.
The function face_locations() returns the (x,y) coordinates of all the bounding
boxes corresponding to the faces detected in the input image.

Next, we call the face_encoding() function to compute the facial embedding which
is the distinguishing marker for the face. Finally, we loop over the encodings to
append them to the list.

When encodings are computed on all training images for a person, we dump the
encodings in a pickle file that works as the training model. Pickle is a Python module
used for serializing and deserializing Python object structures. See the following
code:

>>print('Dumping in pickle')

 data = {'encodings': Encodings, 'names': Names}

 f = open("encodings.pickle", 'wb')

 f.write(pickle.dumps(data))

 f.close()

Now, copy all the code segments discussed in the section and paste them into a text
editor in Pi and name it as train_model.py. Save the file inside the main project
directory Face_recognition_Project.

Now, execute the script on a terminal using the following command:

>>python train_model.py

The program will parse all the training images one after one, process each of them
to obtain the face encodings, and finally create the pickle file, encodings.pickle,
which will be stored in the same directory.

192 Hands-on TinyML

Real-time face recognition
Now, we have the training model. We are ready to implement the testing part for
on-device face recognition. Refer to the face recognition pipeline in figure 7.1. The
recognition task involves the following steps:

• A live video stream is captured using the Pi camera. It will be displayed in a
new video window.

• Image frames are extracted from the video stream in an infinite loop. Each
image will be individually analyzed.

• For each frame, we will first check whether the frame has a human face or
not. If a face is detected, then only it will determine whether the detected
face matches the target person(s) upon which the model had been created.

• If the target person is detected, the name will be shown, and it will print
unknown if we do not get a match.

Now, we will implement the code. Let us import the necessary libraries.

>>import face_recognition

 import imutils

 import pickle

 import time

 import cv2

 from picamera import PiCamera

 from picamera.array import PiRGBArray

Now, let us perform the initialization tasks. We will first load the training model
which is stored in the project directory as a pickle file to obtain the encoding
information of the trained faces along with the name of the person(s). We will create
a variable currentname, which will store the name of the last person detected by the
algorithm. If the detected face does not match with any of the faces in the training
set, the variable will be set as unknown. The default value of the variable currentname
is set as unknown. See the following code:

>>data = pickle.loads(open('encodings.pickle', 'rb').read())

 currentname = 'unknown'

Now, we will start capturing a video stream from the camera. This part of the code is
similar to what we did during data collection. We will create a PiCamera object and

Deep Dive into Application Deployment 193

specify the video resolution and the frame rate to capture in an RGB array. Here is
the code:

>>cam = PiCamera()

 cam.resolution = (320, 240)

 cam.framerate = 10

 rawCapture = PiRGBArray(cam, cam.resolution)

Now, we will implement the main loop. It is an infinite loop. Inside the loop, one
image frame will be grabbed from the video stream at a time for processing. The
program will wait for 1 millisecond for a user key press. The live video will be
displayed in a window. It will exit the loop if the escape key is pressed.

On every frame, the following set of operations are performed.
1. First, we call the face_location() method from the face_recognition

module to detect and locate the faces inside the images.
2. If a face is detected, it will provide the (x, y) coordinates of the boundary box

of the face. The boundary box of the detected face will be marked by a square
in the image window

3. Next, we will compute the facial encodings of the detected face using the
face_encodings() method.

4. Finally, we will check whether the extracted encodings match with our
known encodings stored in the pickle file.

5. In case of a match, the name of the person will be printed on top of the
boundary box. Otherwise, we will print unknown on top of the boundary
box.

Here goes the full code snippet corresponding to the main loop:

>>while True:

 for frame in cam.capture_continuous(rawCapture, format='bgr', use_
video_port =True):

 #get a frame from the video

 image = frame.array

 rawCapture.truncate(0)

 k = cv2.waitKey(1) & 0xFF

 #rawCapture.truncate(0)

194 Hands-on TinyML

 if k%256 == 27: # ESC pressed

 break

 # detect faces in the frame

 boxes = face_recognition.face_locations(image)

 # compute the facial embeddings for each face bounding box

 encodings = face_recognition.face_encodings(image, boxes)

 names = []

 for encoding in encodings:

 # try to match each face in the input image to our known
encodings

 matches = face_recognition.compare_faces(data
['encodings'],

 encoding)

 name = 'unknown' #if face is not recognized

 # check to see if we have found a match in our training file

 if True in matches:

 matchedIdxs = [i for (i, b) in enumerate(matches) if b]

 counts = {}

 # loop over the matched indexes for each recognized
face

 for i in matchedIdxs:

 name = data['names'][i]

 counts[name] = counts.get(name, 0) + 1

 # determine the recognized face with the largest
number of votes

Deep Dive into Application Deployment 195

 name = max(counts, key=counts.get)

 #If someone in your dataset is identified, print their
name on

 if currentname != name:

 currentname = name

 print(currentname)

 # update the list of names

 names.append(name)

 # loop over the recognized faces

 for ((top, right, bottom, left), name) in zip(boxes, names):

 # draw the predicted face name on the image

 cv2.rectangle(image, (left, top), (right, bottom),

 (0, 255, 225), 2)

 y = top - 15 if top - 15 > 15 else top + 15

 cv2.putText(image, name, (left, y), cv2.FONT_HERSHEY_
SIMPLEX,

 .8, (0, 255, 255), 2)

 cv2.imshow('window', image)

 if k%256 ==27 : # ESC pressed

 print("Closing...")

 break

 cv2.destroyAllWindows()

196 Hands-on TinyML

Copy all the code segments discussed in this section and paste them into a text
editor. Name the file face_recognition_camera.py and save it in the main project
directory. That means your project directory will contain the following:

1. All three Python files—headshots_data_collection.py, train_model.py,
and face_recognition_camera.py.

2. The dataset folder contains the training images.
3. The pickle file, encodings.pickle, correspond to the training model.

Open a terminal, and type the following command to execute the script for face
recognition:

>>python face_recognition_camera.py

The program will take for around 5–10 seconds to perform the initializations.
A new window will appear to show the camera preview. Now, bring the camera
close to your face using the ribbon so that it can capture your headshot images.
It will mark your face with a box and print your name. Similarly, it will be able to
detect any other persons as well if your application is trained on them. For all other
persons, the detected faces will be marked as unknown. In order to get the optimum
performance, your face position should be similar to the training images. Since there
are plenty of image processing operations involved in the recognition process, the
on-device real-time performance might get slightly compromised. You can expect
a frame rate of 2–3 frames per second in the recognition process on a Raspberry Pi
3 Model B+. It will run much faster on a Raspberry Pi 4 device. One more thing to
remember is the video resolution. In our application, the video resolution is 320 ×
240 pixels. Although a lesser video resolution ensures a much faster performance, the
recognition accuracy may drop due to inferior image quality. You are encouraged to
analyze the trade-off between model accuracy and real-time performance by varying
the video resolution.

Conclusion
In this chapter, we have implemented a practical TinyML application for real-
time on-device person recognition from facial images on the Raspberry Pi. We
have primarily relied on publicly available libraries to implement the project. The
lightweight hog model, readily available in the face_recognition library, is used
for face detection. Note that the modern deep learning-based face recognition
approaches are often more accurate but are computationally expensive; hence, they
are difficult to implement on a Raspberry Pi for real-time recognition.

Deep Dive into Application Deployment 197

Person recognition has several practical use cases in our everyday life in terms of
user authorization and authentication. There are plenty of such applications that
you can deploy on your own. For example, you can automatically turn on and turn
off the smart light of the room based on person authentication. You can also deploy
the face recognition application at the front door of your house so that it can send
messages prompting their names as soon as the known persons appear in front of
the camera. You are encouraged to create your own application on top of the face
recognition project and deploy for fun.

So far, we have used Raspberry Pi as the target device to deploy our TinyML
applications. It is basically a miniaturized computer with limited hardware
resources, but it still has sufficient computational power to run sizable deep learning
models. Remember that real TinyML applications are primarily meant for deploying
on much smaller devices, such as microcontrollers, which are more constrained in
terms of hardware and software. In the upcoming chapter, we will explore how a
machine learning model can be further optimized to deploy on such devices.

Key facts
• Person recognition has several applications in modern digital systems for

automatic on-device user authentication.
• The Raspberry Pi camera is a dedicated hardware module for capturing

images and video on the Raspberry Pi.
• The face-recognition module is a freely available Python package for

automatic face detection.
• The face recognition project we have implemented in this chapter has three

parts: data collection, model training, and real-time person recognition.
• The application requires on-device training for a better user experience.
• In this project, we have used the histogram of oriented gradients (hog) to

extract features, which is a simple yet efficient way of face recognition.
• The hog-based models are only reliable in detecting the frontal face. Hence,

while executing the project, make sure you directly look at the camera while
capturing the training data and also for recognition. Also, make sure the
room has sufficient ambient light.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
So far, we have successfully implemented two TinyML projects. In Chapter 6, Deploying
My First TinyML application, we developed an optimized Convolutional Neural
Network (CNN) model for offline image classification. In the upcoming chapter, we
implemented another application for real-time on-device face recognition from a live
video feed recorded by a camera. Both our applications were deployed on Raspberry
Pi, a commercially available single board computer. Despite its smaller form factor
and lower power consumption than a standard desktop computer, Raspberry Pi has
a powerful processing unit and enough computation memory space to store sizeable
deep learning models to run complex applications. As a result, we hardly faced any
real challenge in porting our application to make on-device inferences. However, it
is worth noting that TinyML applications are primarily intended to be implemented
on even smaller devices, such as microcontrollers, which have limited computing
capacity compared to a Raspberry Pi and only a few kilobytes of computing memory.

In Chapter 1, Introduction to TinyML and its Applications, we briefly talked about
microcontrollers. Microcontrollers are tiny integrated circuits specifically designed
to execute a certain task in a repetitive manner. Typically, a microcontroller is
composed of a processor, memory, and input/output peripherals, all assembled

Chapter 8
TensorFlow Lite for

Microcontrollers

200 Hands-on TinyML

into one chip. Microcontrollers are commonly used in large industrial machines,
vehicles, electronic appliances, and medical equipment to perform some kind of
automation. Usually, a microcontroller reads the data from a sensor device through
some interfaces and processes it internally either to produce an output or to trigger
another microcontroller. Despite their limited capabilities, microcontrollers have the
advantage of consuming very low power. Consequently, they can remain active for
extended periods of time even if they are continuously performing their designated
tasks. For example, the electronic thermometer found in many households contains a
simple microcontroller that reads the temperature sensor, converts it into the required
scale, and displays the value. Similarly, in large industrial machines in factories,
hundreds or thousands of microcontrollers are installed to continuously measure
the machine vibration, load, and so on 24 × 7 in order to generate alarms when
necessary. In general, microcontrollers are primarily fitted into another machine to
do some measurements of that host machine. Hence, they need to be small in size
so that they can be easily fitted. Second, they need to draw extremely low power
from the source so that they remain active for several weeks without charging or
replacing the battery. As a result, the computational capability of a microcontroller
is extremely low.

Although a microcontroller may appear similar to a single board computer like
Raspberry Pi, they have several significant differences. Both have a processor,
memory, and input/output peripherals. But this is the only similarity between
them. Let us now understand the difference. Raspberry Pi is identical to a complete
computer system with a dedicated operating system that enables it to run multiple
programs concurrently. For instance, one can surf the Web, listen to music and even
write a Python program. On the other hand, microcontrollers are dedicated to one
application, and they typically do not have an operating system. They also have
fewer resources. For example, a typical microcontroller has a few hundred kilobytes
of RAM, whereas a Raspberry Pi has several gigabytes of RAM. Microcontrollers
also have limited processing capabilities. Modern deep neural networks can
be large in size. As demonstrated by the TensorFlow Lite model used for image
classification in Chapter 6, Deploying My First TinyML Application, which had a size
of 5.6 megabytes. Although it was a fairly simple deep learning model, it would
not fit in a microcontroller without further optimization. A second key difference
is that you cannot directly write codes to a microcontroller. Microcontrollers do
not have an operating system or a compiler. In order to program a microcontroller,
we have to install an environment on our computer which communicates with the
microcontroller. We write and compile our program on the host computer and then
upload it into the target microcontroller for execution.

TensorFlow Lite for Microcontrollers 201

In previous chapters, we implemented all our machine learning projects in Python
which is a high-level programming language. Fortunately, Raspberry Pi comes with
a Python interpreter. However, most microcontrollers can only be programmed in
a dedicated low-level language similar to C/C++. You might wonder how we can
convert a large TensorFlow model written in Python into an equivalent application to
efficiently run on microcontrollers. TensorFlow provides TensorFlow Lite (TFLite)
for Microcontrollers, a set of libraries specially designed to run machine learning
models on tiny microcontroller devices. The core runtime is highly compressed and
just fits in 16 kilobytes on an ARM Cortex M3 processor, which is a popular choice
in many microcontrollers. Furthermore, it does not require any operating system
support, any specific C/C++ libraries, or dynamic memory allocation.

TensorFlow Lite for Microcontrollers is written in C++ and requires the 32-bit
platform to operate. It supports a number of microcontroller-based development
boards, including Arduino Nano 33 BLE Sense, SparkFun Edge, Adafruit EdgeBadge,
Espressif ESP32-DevKitC, and many others. In this book, we will use the Arduino
Nano 33 board to deploy our TinyML applications. In this chapter, the focus is
on creating a simple machine learning application to modulate the brightness of
a Light Emitting Diode (LED) according to a sinusoidal function and deploy it on
Arduino Nano. In the upcoming chapter, we will create a more complex application
of keyword detection via speech processing.

Structure
In this chapter, we will discuss the following topics:

• Arduino Nano 33 BLE Sense
 o Setting up the Arduino Nano
• First TinyML project on the microcontroller—modulating the potentiometer
 o Required components
 o Connecting the circuit
 o Read potentiometer to control the brightness of the LED
 o Creating a TensorFlow model to modulate the potentiometer reading
 o Inference on Arduino Nano using TensorFlow Lite for Microcontrollers

202 Hands-on TinyML

Objectives
In this chapter, we will learn to develop our first neural network application for
a tiny microcontroller device. We will particularly use the open-source library
TensorFlow Lite for Microcontrollers to implement our project. The main objective
of this chapter is to be familiar with the procedure of implementing a neural network
from scratch in TensorFlow to eventually deploy it on a microcontroller to make
on-device inferences. Our application will be deployed on Arduino Nano 33 BLE
Sense, which is a recommended microcontroller board for TinyML applications. The
application we are going to implement is fairly simple. The microcontroller will read
the linearly varying electrical voltage provided by an external potentiometer as its
input, convert the voltage values as per a halfwave sinusoid function using a simple
neural network, and controls the brightness of an LED accordingly. Remember,
due to its resource constraints, you cannot even train a small neural network on
a microcontroller. We will train the neural network in Colab using TensorFlow.
The model will be converted into a TFLite model. This part of the project will be
implemented in Python. We will then convert the model into an equivalent C/C++
library for microcontrollers. Next, we will write an inference application for Arduino
using a programming language that is very similar to C/C++. In this chapter, We
will learn in detail how to set up the Arduino to implement TinyML applications. As
a prerequisite, this chapter assumes that you have some fundamental knowledge of
programming in C/C++ and also have some basic idea of electronic circuit designing.

Arduino Nano 33 BLE Sense
The Arduino Nano 33 BLE Sense is a tiny microcontroller-based development board
by Arduino. It is a 3.3V AI-enabled board of the Arduino family in the smallest
available form factor. The processor of the microcontroller is powerful enough to run
TensorFlow Lite and is highly recommended for deploying TinyML applications.
It also comes with Bluetooth Low Energy (BLE) module that can be used in IoT
applications. The board has an nRF52840 processor that comes with 64 megahertz
clock speed, 256 kilobytes of Static RAM (SRAM), and 1 megabyte of flash memory.
The board has 14 digital I/O pins, out of which there are eight analog input pins to
connect to external electronic components and sensors for data acquisition. It has
a 3.3V operating voltage, and it draws a 10 mA current per I/O pin, which is an
extremely low power, even for an Arduino. Furthermore, the microcontroller board
comes with a number of embedded sensors such as a 9-axis Inertial Measurement
Unite (IMU) sensor, humidity, and temperature sensor, barometric sensor, proximity

TensorFlow Lite for Microcontrollers 203

sensor, and microphone, so that one can readily create a number of practical
applications without any additional circuitry. It supports standard communication
protocols such as UART, I2C, and SPI, among others, to interact with external circuits
and sensors for data transfer. Arduino Nano has a micro-USB port to connect to a
laptop or a desktop for power supply and file/data transfer via serial communication.
Be very careful while working with the Nano. You should never apply more than
3.3V to the pins. Connecting a higher voltage signal may damage the board. Figure
8.1 features the Arduino Nano 33 BLE Sense Board:

(a) (b)

Figure 8.1: (a) The Arduino Nano 33 BLE Sense Board with header and (b) its pin-out diagram

Figure 8.1(a) shows the image of the Arduino Nano 33 BLE Sense microcontroller
board with its header pins soldered. The pin-out diagram is shown in figure 8.2(b).
The board is available for procurement from the official website of Arduino1 and
also from standard e-commerce platforms selling embedded hardware. The official
Arduino website provides more details about the Arduino Nano board along with
its technical specifications. Apart from the Arduino board, you will also require a
micro-USB to USB cable to connect your Arduino to a host computer. Make sure
the cable is enabled for both power supply and data transfer. In the official Arduino
store, you can procure the Arduino Nano board as part of a complete package called
the Arduino Tiny Machine Learning Kit2, which is a ready-to-use development
kit containing all the necessary components to design and deploy simple TinyML
applications. The kit comes with the Arduino Nano board, a micro-USB cable, a
shield for mounting the Arduino Nano, and an Arduino camera to implement real-
world image and video-related applications.

1 https://docs.arduino.cc/hardware/nano-33-ble-sense
2 https://store-usa.arduino.cc/products/arduino-tiny-machine-learning-kit

204 Hands-on TinyML

Setting up the Arduino Nano
Now, let us set up the Arduino Nano for programming. Arduino microcontrollers
support a high-level programming language that is syntactically very similar to C/
C++. Remember, we cannot directly write programs on most of the microcontrollers,
including Arduino. We write all the codes on a host computer, compile them,
and then upload them to the microcontroller for execution. Arduino provides an
Integrated Development Environment (IDE) for writing programs, which needs to
be installed on the host computer beforehand. In this section, we will learn to setup
the Arduino Nano device in detail. First, connect the micro-USB port of the Arduino
Nano to the cable and the other end of the cable to the USB port of the host computer.
Once connected, a green LED next to the micro-USB port will be ON, indicating your
Arduino Nano is successfully connected and powered.

In order to start programming, we need to install the Arduino IDE on our computer.
The IDE supports all major operating systems, such as Windows, Linux, and mac
OS X. Visit the official website to download and install the IDE3. Although Arduino
IDE 2.0 is the recent major release of the IDE, which is faster and more feature-rich,
we will use the classical Arduino IDE 1.8.x to implement all the projects. You can
expect to seamlessly run all the projects covered in this book, even if you use version
2.0 of the IDE. Follow the detailed instruction provided in the official website to
download and install the Arduino IDE depending on the operating system of your
host computer. In case you face any difficulty, the Arduino community has a forum4
to discuss issues regarding the installation of the IDE and other troubleshooting,
which you are encouraged to visit.

Once the installation is completed, open the IDE on your computer. You will see a
window similar to what is shown in figure 8.2.

3 https://www.arduino.cc/en/software
4 https://forum.arduino.cc

TensorFlow Lite for Microcontrollers 205

Figure 8.2: Arduino IDE homepage

The layout of Arduino IDE contains the following components:
• The white text editor in the middle is where you write your code.
• The black console at the bottom is where the error message and other

information are shown during compilation and code uploading.
• A toolbar with few buttons is located on top of the text editor to perform

various operations, including saving your work, compiling, and uploading
programs.

Now, we need to install some libraries specific to the Arduino Nano 33 board. To do
so, follow the given steps:

1. Disconnect the Arduino board. On the IDE, go to Tools → Board → Board
Manager. A new window will open.

2. Type Mbed OS in the search space of the window.
3. Select Arduino Mbed OS Nano Boards and click on Install.

Mbed OS is an open-source low-powered operating system for Cortex-M boards
used in Arduino Nano. It provides an abstraction layer for the microcontrollers so
that application developers can write C/C++ applications on any Mbed-enabled
board. Refer to figure 8.3. It will download and install the core for the Arduino Nano
33 BLE Sense. Make sure you install the latest version of the software.

206 Hands-on TinyML

Figure 8.3: Installing the Mbed OS core for Nano boards

Once the necessary library is installed, close the IDE. Now, connect your Arduino
Nano board to your computer’s USB port via the micro-USB cable. Wait for the
green LED on the Arduino to be ON. Now, open the IDE again. You need to perform
two important steps. First, go to Tools → Board → Arduino Mbed OS Nano Boards →
Arduino Nano 33 BLE to select the Arduino Nano board. Next, go to Tools → Port,
check, and select the port corresponding to the board.

For Windows machines, the port will be showing something like <com14> (Arduino
Nano BLE). For Linux, the port will look something like /dev/ttyACM0, and for mac
OS X, the port will be something like /dev/cu.usbmodem11201 (Arduino Nano BLE).
Of course, the final numeric value might vary at your end. Note carefully, every time
you connect your Arduino to your computer for programming, ensure that you have
selected the board and also the proper port at the beginning. Your program will not
be uploaded if the board and the port is not recognized by the host machine, and it
will throw an error.

Now, let us execute a simple program on the Nano board. Arduino IDE comes with
plenty of example codes. We will execute one of them. Go to File → Example →
01.Basics → Blink. A new code window will appear, which is shown in figure 8.4.
The code inside the text editor looks very similar to a C/C++ program. The program
description and the expected output are mentioned at the beginning of the code.
This is possibly the simplest Arduino program for beginners. It turns on the inbuilt

TensorFlow Lite for Microcontrollers 207

LED of the Arduino for one second and then turns it off for another one second,
which keeps repeating.
Refer to figure 8.4:

Figure 8.4: Code to blink an LED on Arduino

Now, let us have a code walkthrough. Arduino programs are termed as sketches.
Every Arduino sketch must have two void functions, setup() and loop(). The
setup() function is used to configure the Arduino device for the program. The
function is executed only once at the beginning of the program. We typically perform
all initialization tasks inside it. In the preceding code example, we initialize the
digital pin of the inbuilt LED of the Arduino inside setup(). The function loop() is

208 Hands-on TinyML

an infinite loop that executes forever once the setup() function is executed. We put
all our programming logic inside this function. In the preceding code example, we
first turn on the LED by setting the voltage level as HIGH to the digital pin of the
LED. Then, we wait for a second, turn off the LED by setting the voltage of the digital
pin to LOW, and then again wait for a second. The whole thing keeps repeating.

Now, we will compile the sketch. Click on the tick button located on the top of the
text editor in the IDE to compile. Refer to figure 8.4. In case of a compilation error,
the error message will be printed in the console at the bottom of the text editor. Once
it is successfully compiled, click on the right arrow button next to the tick button to
upload the sketch to the Arduino Nano. Make sure you have selected the correct
board and the port before uploading the code. You will see the log messages in the
console. Once the program is successfully uploaded, you will find that the yellow
LED of the Nano board, next to the micro-USB port and opposite to the green LED,
will start blinking. It will turn on for a second and then turn off for another second,
and the process will continue.

Remember, a program uploaded to a microcontroller executes forever as long as
the power supply is ON. If you disconnect the power by removing the cable and
reconnecting again, it will start executing the program as soon as the power supply
is restored. You can upload a new program to remove the existing program. A
simple way to remove an existing program is to upload an empty sketch to Arduino.
To create an empty sketch, create a new sketch, compile and upload the following
program:

void setup()

{

}

void loop()

{

}

It will delete the existing program and upload a new program that does nothing.
You can again upload a fresh sketch.

Now, we have successfully set up our Arduino Nano and executed our first program
on it. In the next section, we will learn to deploy our first TinyML application on it.

TensorFlow Lite for Microcontrollers 209

First TinyML project on the
microcontroller—modulating the
potentiometer
Our first TinyML application on Arduino Nano is a fairly simple project, which is
intended to guide you through different steps of implementing and deploying a
TinyML project from scratch on a real-world microcontroller. We will specifically use
the TensorFlow Lite for Microcontrollers package to implement the project.

Let us understand the problem statement before implementing it. In this project,
we are going to modulate the voltage output of a linear potentiometer according
to a halfwave sinusoidal curve. You might have read about potentiometers in
your undergraduate courses on electrical engineering. A potentiometer converts
mechanical displacement into an electrical output. A potentiometer is basically a
three-terminal variable resistor in which the resistance can be manually varied to
control the current flow in the circuit. They are commonly used as voltage dividers
in electrical circuits. The circuit diagram of a potentiometer is shown in figure 8.5 (a).
In simple words, a potentiometer works by varying the position of a sliding contact
across a uniform resistance. As shown, the entire input voltage is applied across the
whole length of the resistance. The output voltage is the voltage drop between the
fixed and the sliding contact. As we move the sliding contact from one end of the
resistance to another, the output voltage increases. Potentiometers are commercially
available in the form of a small passive electrical component shown in figure 8.5 (b).
It has three pins and a manual rotating shaft. The two outer pins are connected to the
voltage input (Vin) and the ground (GND), respectively. You can connect any of one
of them to the input voltage and the other to the ground. The analog output voltage
is obtained from the central pin. You need to rotate the shaft manually to change the
resistance. As a result, the output voltage also varies.

Refer to figure 8.5:

 (a) (b)

Figure 8.5: (a) Circuit diagram of a potentiometer (b) a 1-kiloohm potentiometer

210 Hands-on TinyML

In this project, we will use the potentiometer to linearly divide the source voltage
ranging between 0 V and 3.3 V. The voltage output by the potentiometer will be
converted to a halfwave sinusoid to modulate the LED.

We will implement our project in the following three steps:
1. First, we will connect the potentiometer to our Arduino Nano board and

implement a baseline program that reads the potentiometer value and
applies it to the inbuilt LED of the Arduino Nano to control its brightness.
As expected, the brightness of the LED will vary linearly as we rotate the
potentiometer shaft to increase the voltage.

2. Next, we will create a machine learning model to convert the linear
potentiometer values according to halfwave sinusoid. We will implement
a simple neural network that takes inputs within a linearly spaced range of
values and maps them into a halfwave sinusoid. The network model will
be developed in TensorFlow. This part of the project will be implemented
in Colab in Python. We will then convert the TensorFlow model into the
equivalent C++ library for Arduino.

3. Finally, we will implement the inference program on the Arduino IDE. The
program will receive the potentiometer value as input and convert it using
the model and modulate the intensity of the LED according to the model
output. This part of the project will be implemented using the APIs provided
by TFLite for Microcontrollers.

Required components
We need certain components in order to implement the project. Apart from the
Arduino board, we require a potentiometer that will be connected to the Arduino
Nano to get the input data. We strongly recommend to use a breadboard to make the
necessary circuit connections. In this way, you do not need to solder the components.
You will require to have the following components top implement the project:

• Arduino Nano 33 BLE Sense: Make sure that the header pins are properly
soldered to the board so that it can be easily inserted to a breadboard to make
necessary connections. Refer to figure 8.1 (a).

• Micro-USB to USB cable for power supply.
• 1-kiloohm linear potentiometer.
• Breadboard.
• Few male-to-male jumper wires to make necessary connections.

TensorFlow Lite for Microcontrollers 211

Connecting the circuit
A breadboard is a solderless device for the temporary designing of prototype
electronic circuits for various experimental purposes in the laboratory environment.
Different components of an electronic circuit can be easily interconnected by inserting
their pins into the appropriate holes of a breadboard and also by using jumper wires.
Hence, you do not have to solder them in your circuit and can easily remove the
circuit components. Figure 8.6 features the layout of a breadboard.

Figure 8.6: Layout of a breadboard; the interconnectivity is highlighted

The highlighted regions in the preceding figure indicate how different holes are
interconnected inside the breadboard. There is a split in the middle of the breadboard.
The holes on either side of the split are totally disconnected. The holes in the top
two rows and the bottom two rows in a breadboard are connected horizontally. The
remaining holes are connected vertically. All connected holes are internally shorted.

Now, let us learn how to place the Arduino Nano on the breadboard. Place it in such
a way that the pins at one half of the Nano are inserted in one side of the board, and
the remaining pins are on the other side of the breadboard. That means the pins at
each side of the Nano are inserted at either end of the split. Refer to figure 8.7. The
connection ensures that no two pins are internally connected. Make sure the pins are
fully inserted in the breadboard holes. Take proper care while inserting or removing
the Nano so that the pins are not damaged in the process.

Figure 8.7: Placing the Arduino Nano on a breadboard

212 Hands-on TinyML

Now, follow figure 8.8 to connect the potentiometer to the breadboard. Make the
following connections using jumper wires:

• The pin at one end of the potentiometer connects to the GND of the Arduino
Nano (pin number 29. Refer to figure 8.1 (b)).

• The pin at the other end of the potentiometer connects to the Vin (3.3 V) of
the Nano (pin number 17).

• The central pin of the potentiometer connects to the analog pin A0 (pin
number 19) to read the potentiometer value as input.

Figure 8.8: Connecting the potentiometer to the Arduino Nano

Finally, connect the Arduino to the host computer via the micro-USB port using the
cable for power supply. Open the Arduino IDE on your computer. First, go to Tools
→ Board to select the Arduino Nano board, and then go to Tools → Port to select the
port corresponding to the Nano.

Read potentiometer to control the brightness of
the LED
Now, we will implement a program to read the potentiometer value and also use
the same to control the brightness of the inbuilt LED of the Nano. Open the Arduino
IDE. Go to File → New. A new sketch for an empty program will open. Copy and
paste the following code into the text editor:
void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT);

TensorFlow Lite for Microcontrollers 213

}

void loop() {

 // put your main code here, to run repeatedly:

 // read the input on analog pin 0:

 int i ;

 int cnt = 20;

 int sum = 0;

 for (i = 0; i<cnt; i++)

 {

 int sensorValue = analogRead(A0);

 sum = sum + sensorValue;

 delay(1); // delay in between reads for stability

 }

 int avg_value = sum/cnt;

 int outputValue = map(avg_value, 0, 1023, 0, 255);

 // print out the brightness value

 Serial.println(outputValue);

 analogWrite(LED_BUILTIN, outputValue);

 //delay(1); // delay in between reads for stability

}

Let us now understand what is happening in the code. We first establish a serial
communication between the Arduino and the host computer on port 9600. We will
listen to that port to get the data stream (the potentiometer reading) sent by the
Arduino to the host machine. Next, we initialize the LED inside the setup() function.
The main program goes inside the function loop(). Here, we first read the voltage
value provided by the potentiometer from the A0 analog pin. The analog pins in
Arduino have 10-bit Analog to Digital Converter (ADC) to convert the analog
voltage reading into an equivalent digital value for the microcontroller. Hence, the
readings will be between 0 and 1023. Even in a stable position, the potentiometer
reading can occasionally fluctuate due to circuit noise. To get a stable value, we take
the average of every 20 readings and store that value in the variable, avg_value.
Next, we map the value, avg_value between 0 and 255 in order to safely apply it to
an LED. The mapped value is assigned to the variable outputValue. Here, 0 and 255
correspond to the minimum and maximum brightness for the LED. The function

214 Hands-on TinyML

Serial.println() prints the variable outputValue to the serial port so that it can be
accessed by the host computer. Finally, we assign that value to the LED pin to control
its brightness.

Now, save the preceding sketch with a suitable name, compile the code, and upload
it to the Arduino Nano. Once the code is uploaded, slowly rotate the manual
shaft of the potentiometer to vary the output voltage. Note that the polarity of the
potentiometer depends on the way you connect the two terminal pins to the source
voltage and the ground. If you follow the connection diagram shown in figure 8.8,
the output voltage will increase as you rotate the shaft clockwise, and will decrease
if the shaft is rotated anti-clockwise. The yellow LED will be brighter as you rotate
it clockwise, and the brightness will reduce otherwise. On the IDE, go to Tools →
Serial Plotter. A new window will appear, which plots the live data stream sent
to the host computer by the Arduino Nano on serial port. In the preceding program,
we are printing the variable outputValue value in the serial port, which will be
plotted in the form of a live graph. Now, fully rotate the manual shaft from one end
to another in the clockwise direction, wait for a moment, and then go back to the
original position by rotating it anti-clockwise. You will see that the plotted values
will linearly increase from 0 to 255 as you go clockwise and then eventually return
back to zero as you go anti-clockwise. Refer to figure 8.9:

Figure 8.9: Serial plotter output

The more uniformly you rotate the shaft, the better triangular shape will be
plotted. With this, we have successfully implemented our baseline code to read
the potentiometer value and control the LED brightness linearly. Now, we will

TensorFlow Lite for Microcontrollers 215

implement the actual project to modulate the linear potentiometer readings
according to a halfwave sinusoid. In the next section, we will implement a simple
neural network model in Colab to convert a series of linearly spaced inputs into a
halfwave sinusoid. The model will later be used by our Arduino to modulate the
potentiometer readings.

Creating a TensorFlow model to modulate the
potentiometer reading
In the previous section, we have created the baseline program to control the brightness
of an LED based on the voltage provided by a potentiometer. In this section, we
will create a simple neural network that takes an input value and converts it into a
halfwave sinusoid. Mathematically speaking, we will create a neural network that
will take a value x as input and return an output f(x). If the range of x is in between
0 and T, then f(x) is given by the following:

The value of f(x) will increase from 0 with x. It reaches the maximum value of 1 at
x = T/2. Then, it starts decreasing and again reaches 0 at x = T. We will develop the
neural network model on Colab using Python and TensorFlow and then convert it
into an equivalent TFLite model. Subsequently, the TFLite model will be converted
into an equivalent C++ library for Arduino.

Note that in all previous projects, we have developed neural network models to
solve classification problems, such as classifying images or determining whether a
target person is present in an image or not. In this project, we are going to solve a
regression problem.

Go to Colab on your browser and create a new notebook and save it with an
appropriate name. As usual, we will start by importing the libraries.

>>import tensorflow as tf

 from tensorflow.keras.models import Sequential

 from tensorflow.keras.layers import Dense

 import numpy as np

 from sklearn.model_selection import train_test_split

 import matplotlib.pyplot as plt

 import math

216 Hands-on TinyML

Now, we will obtain the relevant dataset to train and evaluate the network. Simulating
the dataset for this problem is fairly simple. We will generate 1,000 linearly spaced
data points between 0 and 1, which will be the input of the neural network. The
output values will be computed by applying them to the halfwave sinusoid function.
Refer to the following code that generates the data and plots:

>>num_sample = 1000

 x = np.random.uniform(low=0, high=1, size=num_sample).astype(np.float32)

 # Shuffle the values to ensure they are not in order

 np.random.shuffle(x)

 y = np.sin(math.pi*x).astype(np.float32)

 plt.plot(x, y, '.')

 plt.xlabel('x values (input)')

 plt.ylabel('y values (output)')

The program will generate a nice-looking curve of a halfwave sinusoid, shown in
figure 8.10. The input and the output are stored in the variables x and y, respectively.
The output y increases from 0 with x, reaches the maximum value at x = 0.5, and then
again decreases to eventually reach 0 at x = 1.

Figure 8.10: Plotting the generated data

In most real-world applications, the inputs and outputs cannot be modeled by using
a simple mathematical equation, as the output is often influenced by external noise.
This is the reason we use machine learning to estimate the relationship between

TensorFlow Lite for Microcontrollers 217

inputs and outputs empirically in a data-driven way. In this application, we will add
some low-amplitude random noise to corrupt the output. The noisy output data is
plotted in figure 8.11.

>>y= y+ 0.05 * np.random.randn(*y.shape)

 plt.plot(x, y, '.')

 plt.xlabel('x values (input)')

 plt.ylabel('y values (output noisy)')

Figure 8.11: Plotting the dataset after the addition of noise

Now, for a given value of x, you cannot get the accurate value of y by applying it
to a halfwave sinusoid function. Machine learning can help you to find a suitable
relationship between them.

Before creating the machine learning model, we will first split the dataset into
training and test sets. We randomly select 75% of data for training and the remaining
25% of data for evaluation purposes. We will use the train_test_split() function
under the scikit-learn package for that.

>>x_train, x_test, y_train, y_test = train_test_split(x, y, train_
size=0.75)

Next, we will define our neural network architecture. We will use a very simple neural
network comprising two hidden dense layers having 8 and 16 nodes, respectively,
followed by the final dense layer for prediction. Refer to the following code:

218 Hands-on TinyML

>>model = Sequential()

 model.add(Dense(8, activation='relu', input_shape=(1,)))

 model.add(Dense(16, activation='relu'))

 model.add(Dense(1))

Now, we will compile the model for training. Since we are dealing with a regression
problem, we will reduce the mean-squared error between the predicted and
the actual output values as the loss function. An Adam optimizer will be used to
minimize the loss.

>>model.compile(optimizer='adam', loss='mean_squared_error')

Finally, we will train the network. The batch_size is taken as 50, and we will train
the network for 500 epochs. The test set is used for validation:

>>history = model.fit(x_train, y_train, epochs=500, batch_size=50,
validation_data=(x_test, y_test))

Wait for the model to be completely trained. Now, we will use the model to predict
on the test set. We will also visually compare between the actual and predicted
values. Refer to the following code:

>>test_loss = model.evaluate(x_test, y_test)

 y_test_pred = model.predict(x_test)

 plt.clf()

 plt.plot(x_test, y_test, 'b.', label='actual values')

 plt.plot(x_test, y_test_pred, 'r.', label='predicted')

 plt.legend()

 plt.xlabel('x values')

 plt.ylabel('y values')

 plt.show()

The actual and the predicted values are plotted in blue and red, respectively. As
shown in figure 8.12, the predicted values closely match the actual output values.

TensorFlow Lite for Microcontrollers 219

Figure 8.12: Comparison between predicted and actual values

Our baseline model is now created. We will next convert it into an optimized TFLite
model. This part of the code is similar to what we did in our previous projects. We
will create a TFLiteConverter object for the conversion and save the resulting model
in the Colab workspace. Refer to the following code:

>>converter = tf.lite.TFLiteConverter.from_keras_model(model)

 model_no_quant_tflite = converter.convert()

 import pathlib

 tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

 tflite_model_file = tflite_models_dir/'model.tflite'

 tflite_model_file.write_bytes(model_no_quant_tflite)

The resulting TFLite model size is around 2,588 bytes which is small enough to fit
the Arduino Nano having 256 kilobytes of SRAM and 1 megabyte of flash memory.
Since we are dealing with a very simple neural network, we are not applying any
optimization technique while converting it into the TFLite model. However, you
can try standard techniques like quantization-aware training or post-training-
quantization at your end and check the impact on model size and performance.

220 Hands-on TinyML

Finally, we will evaluate the TFLite model on the test set. We are already familiar
with this part of the program. We will create an Interpreter object using the TFLite
model, allocate the tensor for the data and call the Interpreter.invoke() function
to make inferences on the entire test set. The program will also plot the predicted
and actual values. Refer to the following code:

>>x_test = x_test.reshape((x_test.size, 1))

 tflite_model_file = 'tflite_models/model.tflite'

 # Initialize the TFLite interpreter

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

 prediction_list = []

 x_test = x_test.reshape((x_test.size, 1))

 x_test = x_test.astype(np.float32)

 for i in range (len(x_test)):

 interpreter.set_tensor(input_index, [x_test[i]])

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)[0]

 prediction_list.append(prediction)

 plt.clf()

 plt.plot(x_test, y_test, 'b.', label='actual values')

 plt.plot(x_test, np.array(prediction_list), 'r.', label='TFLite
predicted')

 plt.legend()

TensorFlow Lite for Microcontrollers 221

 plt.xlabel('x values')

 plt.ylabel('y values')

 plt.show()

It will generate the following curve, as shown in figure 8.13. It is evident that the
TFLite model behaves similar to the base TensorFlow model.

Figure 8.13: Comparison between predicted and actual values by the TFLite model

Now, we have the TFLite model, which can be called in Python but is not yet
accessible by microcontrollers. We need to convert it into an equivalent C++ library
for microcontrollers. We will do the conversion using the xxd command. On Unix-
like operating systems, the xxd command creates a hex dump of a given input file.
Execute the following lines of code in Colab that first installs xxd and then convert
the TFLite model file into a C++ file.

>># Install xxd

 !apt-get update && apt-get -qq install xxd

 # Convert to a C source file for Microcontrollers model

 !xxd -i tflite_models/model.tflite > model.cc

Once the code is executed, you will find a new file named model.cc generated in
your Colab workspace, which will be used by your Arduino program to make
inferences. Right-click on the file and download it to your host machine. With this,
we have successfully created our neural network model. In the next section, we will
see how this model file can be used in our program to make on-device inferences on

222 Hands-on TinyML

an Arduino Nano in order to modulate the LED brightness according to a halfwave
sinusoid wave.

Inference on Arduino Nano using TensorFlow
Lite for Microcontrollers
In this section, we will develop the program for Arduino Nano to make inferences
using a TensorFlow model. As mentioned earlier, TensorFlow Lite for Microcontrollers
is a specially designed, highly optimized library for implementing machine learning
and deep learning applications on microcontrollers. The key objective of this section
is to get familiarized with the library APIs to implement a TinyML application.

The program we are going to implement will read the analog voltage obtained from
the potentiometer as input, convert the value according to halfwave sinusoid using
the neural network model we created in the previous section, and finally, modulate
the LED brightness accordingly. To begin, first, connect the Arduino to your
computer and open the Arduino IDE. Now, we need to install the necessary library.
TFLite for Microcontrollers is written in C++ 11, and hence, can be imported into any
C++ project. The framework is readily available as a standalone Arduino library on
Mbed OS. Go to Tools → Manage Libraries to open the Library Manager. Search for
arduino_tensorflow_lite in the search window. The original Arduino TensorFlow
Lite library is removed from Library Manager at the time of writing this book. The
readers can download the Havard_TinyMLx library, which contains a version of the
TensorFlow Lite library for Arduino Nano. Refer to figure 8.14. Install the library.

Figure 8.14: Installing TensorFlow Lite library for Arduino Nano 33 BLE Sense

TensorFlow Lite for Microcontrollers 223

Now, you are ready to implement TinyML projects on your Arduino. Go to File →
New on your IDE to open a new sketch and save it with a suitable project name.

Similar to a C/C++ program, we will begin our code by including the necessary files
containing the required functionalities for TensorFlow Lite into our code.

#include <TensorFlowLite.h>

#include "tensorflow/lite/micro/all_ops_resolver.h"

#include "tensorflow/lite/micro/micro_error_reporter.h"

#include "tensorflow/lite/micro/micro_interpreter.h"

#include "tensorflow/lite/schema/schema_generated.h"

#include "tensorflow/lite/version.h"

Next, we will include the header file corresponding neural network model that we
created in the previous section.

#include "model.h"

As expected, we need to create two files, model.cpp and model.h, in the project
workspace. Click on the down arrow located at the right side of the toolbar of the IDE
and select New Tab from the dropdown menu. Create two blank files and save them
as model.cpp and model.h. Go to model.cpp and define the following two variables.
alignas(8) const unsigned char g_model[] = {

};

const int g_model_len = ;

Next, open the downloaded model file, model.cc in a text editor. Copy the entire hex
code inside the curling braces next to the variable unsigned char tflite_models_
model_tflite[] and paste inside the curling braces next to g_model in model.cpp.
Next, go to the last line of the downloaded model file to copy the integer value
assigned to the variable tflite_models_model_tflite_len and assign it to the variable
g_model_len. Finally, open the header file model.h and enter the following code.
Save the file

#ifndef TENSORFLOW_LITE_MICRO_POTENTIOMETER_HELLO_WORLD_MODEL_H_

#define TENSORFLOW_LITE_MICRO_POTENTIOMETER_HELLO_WORLD_MODEL_H_

extern const unsigned char g_model[];

extern const int g_model_len;

#endif //

224 Hands-on TinyML

Now, we have included the model files in our program. Go back to the main sketch.
We will first define the data structures corresponding to the model, the model input,
the model output, and an error reporter defined as per TFLite for Microcontrollers.
Next, we will define a TensorFlow interpreter. We will also need to allocate a
dedicated memory space called a Tensor Arena, which is the working space of the
interpreter to perform the inference operation. Assigning the memory space is a very
critical task in creating any application on the microcontroller. You need to assign
and adjust this carefully, depending upon your model length, input and output size,
and other constraints of the applications and also the capacity of the microcontroller.
Refer to the following code:

namespace {

 tflite::ErrorReporter* error_reporter = nullptr;

 const tflite::Model* model = nullptr;

 tflite::MicroInterpreter* interpreter = nullptr;

 TfLiteTensor* model_input = nullptr;

 TfLiteTensor* model_output = nullptr;

 constexpr int kTensorArenaSize = 5 * 1024;

 uint8_t tensor_arena[kTensorArenaSize];

}

Now, we will write the setup() function to initialize different variables. Refer to the
following code:

void setup() {

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT);

 // Set up logging (will report to Serial, even within TFLite functions)

 static tflite::MicroErrorReporter micro_error_reporter;

 error_reporter = µ_error_reporter;

TensorFlow Lite for Microcontrollers 225

 // Read and map the model into a usable data structure

 model = tflite::GetModel(g_model);

 if (model->version() != TFLITE_SCHEMA_VERSION) {

 error_reporter->Report("Model version does not match Schema");

 while(1);

 }

 static tflite::AllOpsResolver resolver;

 // Create an interpreter to run the model to make inference

 static tflite::MicroInterpreter static_interpreter(

 model, resolver, tensor_arena, kTensorArenaSize,

 error_reporter);

 interpreter = &static_interpreter;

 // Allocate memory from the tensor_arena for the model's tensors

 TfLiteStatus allocate_status = interpreter->AllocateTensors();

 if (allocate_status != kTfLiteOk) {

 error_reporter->Report("AllocateTensors() failed");

 while(1);

 }

 // Assign model input and output buffers to pointers

 model_input = interpreter->input(0);

 model_output = interpreter->output(0);

}

Now, go through the preceding code snippet carefully. We are performing the
following steps in the preceding lines of code.

226 Hands-on TinyML

1. Initialize the LED pin.
2. Setup a logger for error reporting.
3. Loaded the training model and map it into a suitable data structure as per

TFLite for Microcontrollers library.
4. An AllOpResolver instance is declared so that the interpreter can access

the machine learning operations to run the model. Currently, TFLite
for Microcontrollers supports only few such operations. Note that with
AllOpResolver, we include all possible operations in a neural network,
such as convolution, dense, and so, which are supported by TFLite for
Microcontrollers. This process obviously consumes more memory. However,
we can afford this in our application because we are dealing with a simple
neural network containing only two dense layers only. Alternatively, we can
include only the required operations to reduce memory consumption.

5. Create a MicroInterpreter object to make inference.
6. Allocate memory from the defined Tensor Arena to the model’s tensors.
7. Assign model input and output buffers to pointers. In this application, we

have a single-valued input and output.

Once all variables are set up, we can implement the loop() function to execute
the actual operation. In this loop, we read the potentiometer value from pin A0.
Similar to the baseline code, it calculates an average of 20 successive readings to get
a stable value. The value is mapped between 0 and 1 and is copied to the model’s
input tensor. Next, we run MicroInterpreter ->Invoke() to make the inference. The
output is obtained from the output tensor. Since the model output is ranged between
0 and 1, the value is multiplied by 255 and then applied to the LED pin to control the
brightness. The whole code inside loop() is as follows:

void loop() {

 int i;

 int cnt = 20;

 int sum = 0;

 for (i = 0; i<cnt; i++)

 {

 int sensorValue = analogRead(A0);

 sum = sum + sensorValue;

TensorFlow Lite for Microcontrollers 227

 delay(1); // delay in between reads for stability

 }

 int avg_value = sum/20;

 // map the value between 0 and 1

 // as per the input to tre neural network model created earlier

 float x_val = (float)avg_value/1023;

 // Copy value to input tensor

 model_input->data.f[0] = x_val;

 // Run inference

 TfLiteStatus invoke_status = interpreter->Invoke();

 if (invoke_status != kTfLiteOk) {

 error_reporter->Report("Invoke failed on input: %f\n", x_val);

 }

 // Read predicted y value from output buffer (tensor)

 float y_val = model_output->data.f[0];

 // Translate to a PWM LED brightness

 int brightness = (int)(255 * y_val);

 analogWrite(LED_BUILTIN, brightness);

 // Print the brightness value

 Serial.println(brightness);

}

Copy and paste all the preceding codes and save the sketch. Now, Compile and
upload the program to the Arduino Nano. It may take some time to compile it for
the first time. Wait till the sketch is uploaded. Now, slowly rotate the shaft of the

228 Hands-on TinyML

potentiometer from one end to another, either clockwise or anti-clockwise, and note
the changes in the LED brightness. You can see that the yellow LED is initially OFF.
The brightness will increase as the shaft is rotated (that is, the output voltage of
the potentiometer increases). The brightness will be maximum when the shaft is
somewhere in the middle of the entire range. The brightness will start reducing as
you rotate further. The LED will be OFF again when the shaft is completely rotated.
We print the variable, brightness that controls the LED brightness on the serial port.
Now, go to Tools → Serial Plotter to visualize the plot. Rotate the shaft completely
from one end to another. You will see a waveform similar to a halfwave sinusoid will
be plotted. Refer to figure 8.15.

Figure 8.15: Model output at the serial plotter

Conclusion
In this chapter, we have implemented our first TinyML application on Arduino Nano
33 BLE Sense, a commercially available microcontroller unit. We have specifically
used TensorFlow Lite for Microcontrollers, a highly optimized machine learning
library for microcontrollers to implement the project. Arduino Nano BLE 33 Sense is
a microcontroller-based development board commonly used in implementation of
tiny machine learning applications. With little effort, the application developed in
this chapter can also be implemented on other commercial microcontroller boards
such as SparkFun Edge, Raspberry Pi Pico, and so on. Remember, the key objective of
this chapter was to become familiar with the Arduino device and also with the APIs
provided by TensorFlow Lite for Microcontrollers for end-to-end implementation of

TensorFlow Lite for Microcontrollers 229

a real TinyML project comprising a small neural network. In the upcoming chapter,
we will implement a more complex project of keyword recognition from human
speech on Arduino Nano using a more complex Convolutional Neural Network.

Key facts
• Microcontrollers are tiny electronic circuits to perform certain computational

tasks. They are severely resource-constrained in terms of memory and
computation power.

• TensorFlow Lite for Microcontrollers is a highly optimized software library
written in C++ for implementing TinyML applications on microcontrollers.

• TensorFlow models trained on Colab can be converted into an equivalent
C++ library to make inferences on microcontrollers.

• Arduino Nano BLE 33 Sense is a popular development board for
experimenting with TinyML.

• Arduino IDE is a specially designed environment to program the Arduino
microcontroller.

• An Arduino program source code must contain two key functions, setup()
to initialize the program environment and loop() to execute the main
program logic in a repeated manner.

• Before uploading a program to Arduino, always make sure to select the right
board and port in the IDE.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
The previous chapter described how to successfully deploy a machine learning
model on Arduino Nano 33 BLE Sense, a commercially available microcontroller unit
for TinyML applications. Recall the different steps involved in the project. First, we
collected the necessary dataset for the application and created the machine learning
model in Python on Colab. Next, we converted the model into an equivalent TFLite
model which was then eventually exported as an equivalent C/C++ library for
the target microcontroller. In general, microcontrollers have much lesser memory
space and lower computational capacity than modern smartphones or single board
computers like Raspberry Pi. Hence, each time we implement a project, we have
to be very careful in optimizing our model specifically for the target hardware
device where the model will be deployed. In the previous chapter, we created a
simple neural network application that modulates the brightness of an LED. Our
focus was on using TensorFlow Lite for Microcontrollers, a library specifically
designed for running machine learning models on low-powered microcontrollers.
The main objective of the previous project was to become familiar with the steps
involved in creating a TinyML application from scratch to eventual deployment on
a microcontroller. In this chapter, we will implement a more complex project of real-
time keyword spotting on microcontrollers.

Chapter 9
Keyword Spotting on

Microcontrollers

232 Hands-on TinyML

Keyword spotting is a widely used frontend application in the voice assistant devices
such as modern smart speakers. The smart speakers have been extremely popular in
recent times. We all are aware of the voice assistant devices such as Amazon’s Alexa,
Google Home, or Apple’s Siri. They are intended to recognize and comprehend
our voice commands and act accordingly. Amazon’s Alexa and Google Home are
available in the form of smart speakers, as shown in figure 9.1.

The voice assistant is also available on smartphones. For example, Siri is a voice-
driven virtual assistant that is readily available on Apple’s iPhone, iPad, and
MacBook devices powered by iOS or mac OS X. A similar voice assistant service
is also available from Google on the Android platform. Cortana is another popular
voice assistant by Microsoft. Through voice assistant services you can perform a
variety of tasks via speech commands, whether you want to play music from your
playlist, check weather forecast, add an item to your online shopping cart, or control
other smart devices in your home, like lights and TVs. Your smart speakers can
handle it all.

Figure 9.1 features two commercially available smart speakers, Amazon Echo, and
Google Home:

(a) (b)

Figure 9.1: Commercially available smart speakers (a) Amazon Echo, enabled by Alexa and
(b) Google Home

The underlying technology of the voice assistant devices is a perfect example of how
edge AI and IoT communicate together. Recall how you operate your voice-assisted
device on your smartphone. Suppose you want to ask your device about tomorrow’s
weather forecast. What do you do?

You do not ask the question directly without addressing your device. Instead, you
first call your device by a dedicated proper noun, which is termed as a keyword or

Keyword Spotting on Microcontrollers 233

a wake-up command. Then, you ask the actual question, for example, What’s the
weather in Delhi? The keyword is different for different devices. On iPhone, you say,
“Hey Siri!”; on Android-based smartphones, you say, “Ok Google!,” and on Amazon
Alexa, you need to say “Alexa!” as the dedicated keyword for addressing the device
before your actual query. Your device first detects the dedicated keyword to wake
up from a semi-passive state to an active state. Then it processes the following voice
instruction asking about the weather forecast and responds accordingly. The task
of identifying the dedicated keyword for the device is termed as keyword spotting.

The process of keyword spotting involves a lightweight machine learning application
that runs on-device and should use minimal power. It should also have minimum
latency. The sole purpose is to activate the voice assistant in order to initiate the
actual voice assistant service. In this chapter, we will develop a basic keyword
spotting application on the Arduino Nano microcontroller.

Structure
In this chapter, we will discuss the following topics:

• Working principles of a voice assistant
• Implementation of a keyword spotting algorithm in Python
 o Audio spectrogram
 o Designing a Convolutional Neural Network model for keyword spotting
• Introduction to Edge Impulse
• Implementing keyword spotting in Edge Impulse
• Model deployment

Objectives
This chapter will guide you through the process of creating a basic keyword spotting
application on the Arduino Nano 33 BLE Sense. As mentioned in the previous
chapter, the Arduino Nano device is equipped with various sensors, including a
high-quality microphone, which will be readily used in this project for real-time
speech recording as digitalized audio data and classification of one-second audio
data directly on the microcontroller. The chapter can be broadly divided into two
parts. Initially, we will design an end-to-end machine learning application in Python
for keyword spotting using a Convolutional Neural Network (CNN) and test it
on offline speech data. This will allow us to become familiar with the various steps
involved in creating a basic speech recognition system. Later on, we will reimplement
the keyword spotting application to execute on the actual microcontroller device. In

234 Hands-on TinyML

the previous chapter, we developed our TinyML application on Arduino IDE using
TensorFlow Lite for Microcontrollers. However, this approach may not always be
convenient to create real-life complex applications. In this chapter, we will introduce
Edge Impulse, an easy-to-use browser-based tool for creating highly optimized
machine learning models on embedded platforms. Using Edge Impulse, you can
easily create a machine learning model for a wide range of target hardware devices
with a minimum effort of code writing. Furthermore, depending on your hardware
specifications, Edge Impulse suggests the optimum model for your application.

Working principles of a voice assistant
Before developing the actual keyword spotting application, it is important to
understand how voice assistants operate. Suppose we wish to know about today’s
weather forecast from our smart speaker. The smart speaker comes with a high-
quality microphone for audio reordering. The microphone of the smart speaker
is always on and waits for the dedicated keyword. Under this scenario, it is in an
inactive state and does not respond to your commands. It gets activated only when it
detects the dedicated keyword. Then, only it responds to your queries. To summarize,
when you ask a question, the following three things happen in the background:

• Keyword spotting: Your voice assistant is equipped with a powerful
microphone that always passively listens for the keyword, for example,
“Hey Siri” for an Apple device or “Alexa” for an Amazon Echo. Keyword
spotting is the primary task performed by a voice assistant to wake up in
order to answer your queries. Keyword spotting is a real-time task which
needs to be performed on-device. In fact, a lightweight tiny machine learning
algorithm continuously running on the microcontroller of the speaker is
responsible for doing the task. The keyword spotting has to be specific to one
user voice. That means your device should be activated only when called by
you. Remember, when you configure a new smartphone for the first time,
it asks you to configure the voice assistant service. You are asked to say the
designated keyword for few times, which is recorded as the training data
to create a learning model based on your voice. Once the training is done
internally, the model ensures that the device will wake up only when the
designated keyword is spoken by you.

• Natural language processing: After the device is activated, it captures
your following voice instructions that contain your actual question and
respond accordingly. This part is done in the cloud, which requires internet
connectivity. The processing involves Natural Language Processing (NLP),
a dedicated branch of artificial intelligence for speech processing. It combines

Keyword Spotting on Microcontrollers 235

computational linguistics with machine learning models to understand
human language in the form of speech or text data to understand its meaning.
This part of the job involves complex machine learning algorithms which
cannot be done on-device. Once the voice instruction is decoded, it searches
its online data repository to find a suitable answer to it.

• Text to Speech: Now the machine knows what to do to your query. It converts
the resolution to human speech and plays back to you, which sounds similar
to a human voice. On certain devices, it maps some actions, for example,
turning on/off a smart light based on your instruction.

In this chapter, we will implement a simple on-device keyword spotting application
on Arduino Nano 33 BLE Sense. We will create a machine learning model and train it
to detect two target keywords, “on” and “off.” Since the Arduino Nano 33 BLE Sense
has a built-in microphone, no additional sensors are necessary for voice recording.
Our application will continuously record background sound and internally process
every one-second audio recording. In the next section, we will implement an end-
to-end keyword spotting algorithm in Python using TensorFlow to get a real feel of
the speech recognition application that we are going to build. Subsequently, we will
implement a deployable keyword spotting model using Edge Impulse and upload
it on Arduino for real-time keyword spotting.

Implementation of a keyword spotting
algorithm in Python
In this section, we will learn to implement a baseline keyword spotting project
in Colab using TensorFlow. The key objective is to understand the different steps
involved to implement a speech recognition system from scratch, which is the basic
building block of any keyword-spotting application. Later in this section, we will
use the Edge Impulse platform to develop an Arduino library for real-time on-device
keyword spotting.

To begin, let us create a new project in Colab and save it with an appropriate name.
The following code examples are strongly influenced by the TensorFlow tutorial on
audio recognition. You may refer to the Colab notebook for more details1. We strongly
recommend to use the power of GPU for this project so that the model takes less time
to train. On your Colab, go to Runtime → Change runtime type. It will open a new
window, Notebook settings. Select GPU from the dropdown menu under Hardware
accelerator. Click on Save. Now, click on the Connect button located at the right of
the Colab project to connect to a online GPU runtime.

1 https://www.tensorflow.org/tutorials/audio/simple_audio

236 Hands-on TinyML

We will start by importing the necessary Python libraries.

>>!pip install -U -q tensorflow tensorflow_datasets

 import os

 import pathlib

 import matplotlib.pyplot as plt

 import numpy as np

 import seaborn as sns

 from numpy import random

 import shutil

 import tensorflow as tf

 from tensorflow.keras import layers

 from tensorflow.keras import models

Next, we need to get the necessary dataset to create the machine learning model.
We will use the publicly available Speech Commands dataset in our project. The
dataset was contributed by Pete Warden, Technical Lead of the TensorFlow Micro
team at Google. The dataset contains more than 60,000 instances of one-second-long
utterances of 30 different spoken keywords such as “yes”, “no”, “up”, “down”,
“left”, “right”, “on”, “off,” and many more, which are stored in terms of digital
audio files. The audio files are sampled at 16 kilohertz. You may refer to the paper
“Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition” by Pete
Warden to know more about the dataset. Let us now download the dataset in our
project workspace in Colab. We will create a directory called data in our workspace
to store the dataset. The dataset will be downloaded as a compressed zip file, and the
uncompressed data will be stored inside the directory. Refer to the code to perform
the previously-mentioned tasks:

>>DATASET_PATH = 'data/'

 data_dir = pathlib.Path(DATASET_PATH)

 if not data_dir.exists():

 tf.keras.utils.get_file(

Keyword Spotting on Microcontrollers 237

 'speech_commands.zip',

 origin='http://download.tensorflow.org/data/speech_commands_v0.02.
tar.gz',

 extract=True,

 cache_dir='.', cache_subdir='data')

Downloading and extracting this dataset will take some time due to its large size of
approximately 2.5 gigabytes. Once the process is complete, you can navigate to the
Files button on Colab to view the file structure in your workspace. A new directory
named data will be created, which will contain subdirectories corresponding to all
30 keywords. Each subdirectory will contain the corresponding audio files in WAV
format.

Now, let us delve into the problem we aim to solve in this project. We want to develop
a keyword spotting algorithm that can detect the target keywords “on” and “off.”
However, creating a binary classifier may not be sufficient, as the input audio could
contain human speech with other words or may have no background audio at all.

In such cases, a binary classifier would predict either “on” or “off,” which is not the
intended outcome. To deal with the scenario, we will create a multi-class classifier
to detect four different class labels—“on”, “off”, “others”, and “silent”. Hence, we
need to form a new dataset from the original Speech Commands dataset containing
audio instances corresponding to the four target classes we are going to detect. We
will create a new empty directory, mydatset, under the parent directory data. First,
we will copy the two directories “on” and “off” with all their contents from the
original Speech Commands dataset to the newly created directory. Next, we will
create two empty directories: “others” and “silent”. Use the following code:

>>os.mkdir('data/mydataset')

 !cp -r 'data/on' 'data/mydataset'

 !cp -r 'data/off' 'data/mydataset'

 os.mkdir('data/mydataset/silent')

 os.mkdir('data/mydataset/others')

Now, we need to populate the newly created two directories with relevant files. We
will randomly select a few examples from the remaining keywords in the Speech
Commands dataset and mark them as others.

238 Hands-on TinyML

In the following code, we randomly selected 150 audio files from each label
corresponding to different keywords available in the dataset, such as “yes”, “no”,
“up”, “down”, “left”, “right”, and many others and place them in the designated
directory for other types of audios. Refer to the following code:

>>other_labels = ['yes', 'no', 'up', 'down', 'left', 'right', 'bed',
'bird', 'cat', 'dog', 'happy', 'house', 'marvin', 'sheila', 'tree', 'wow']

 sample_per_label = 150

 for label in other_labels:

 path = 'data/'+label

 f = os.listdir(path)

 num_files = len(f)

 file_indx = np.arange(num_files)

 random.shuffle(file_indx)

 for i in range(sample_per_label):

 index = file_indx[i]

 file_name = f[index]

 source = path + '/' + file_name

 destination = 'data/mydataset/others/' + file_name

 # copy only files

 if os.path.isfile(source):

 shutil.copy(source, destination)

Finally, we need to populate the silent folder. To maintain a class balance, we will
create 2,400 silent audio files, each having a duration of one second. We will create
an empty array and add a small amount of random noise to it in order to create some
variation in the silent recordings and save them as WAV files. Refer to the following
code:

>>import scipy

 from scipy.io.wavfile import write

Keyword Spotting on Microcontrollers 239

 fs = 16000

 num_files = 2400

 for i in range(num_files):

 sample = np.zeros(fs)

 filename = str(i*100)+ 'silent.wav'

 sample = sample + 0.1*random.randn(fs)

 scipy.io.wavfile.write('data/mydataset/silent/'+filename,fs,
sample.astype(np.int16))

Similar to the Speech Command dataset, sampling rate of the silent audio files is set
to 16,000 hertz, that means, every second of audio contains 16,000 sample points.
Note the samples are represented in a 16-bit integer number in the audio file. Next,
we need to convert the audio files into an equivalent TensorFlow dataset format
that can be easily applied to a deep learning architecture. Additionally, we also need
to split the dataset into training and validation sets. We will use the TensorFlow
function audio_dataset_from_directory() for that. Refer to the following code. It
will split the dataset in such a way that 80% of the data is kept for training and
the remaining portion as the validation set. We also define a batch_size of 64 for
training.

>>train_ds, val_ds = tf.keras.utils.audio_dataset_from_directory(

 Directory = 'data/mydataset',

 Labels = 'inferred',

 batch_size=64,

 class_names=None,

 validation_split=0.2,

 seed=0,

 output_sequence_length=16000,

 subset= 'both')

240 Hands-on TinyML

 label_names = np.array(train_ds.class_names)

 print()

 print('label names: ', label_names)

Next, we will modify the dataset to drop the extra audio channel to make the overall
computation lighter:

>>train_ds.element_spec

 def squeeze(audio, labels):

 audio = tf.squeeze(audio, axis=-1)

 return audio, labels

 train_ds = train_ds.map(squeeze, tf.data.AUTOTUNE)

 val_ds = val_ds.map(squeeze, tf.data.AUTOTUNE)

Finally, we will split the validation set into two parts, an internal validation set and
a test set. We will use the function tf.data.Dataset.shard.

>>test_ds = val_ds.shard(num_shards=2, index=0)

 val_ds = val_ds.shard(num_shards=2, index=1)

Now, let us examine the dimension of the dataset. The following code extracts a
batch of sample audio and the corresponding labels from the training set and prints
the dimension.

>>for sample_audio, sample_label in train_ds.take(1):

 print(sample_audio.shape)

 print(sample_label.shape)

Since the batch size is 64 and each audio file is one-second-long with a sampling rate
of 16,000 hertz, the dimension of the tensor sample_audio will be (64, 16,000).

Now, let us play a few audio files on Colab and listen to them. The following code
will randomly select five audio files from the batch sample_audio obtained in the
previous code and make them available to be played on Colab. You may execute the
code for few times to randomly select different files in different runs and listen to
them.

Keyword Spotting on Microcontrollers 241

>>from Ipython import display

 for i in range(5):

 indx = random.randint(0, sample_audio.shape[0]-1)

 label = label_names[sample_label[indx]]

 waveform = sample_audio[indx]

 print('Label: ', label)

 print('Audio shape: ', waveform.shape)

 print('Audio playback')

 display.display(display.Audio(waveform, rate=16000))

Now, we have the necessary data for keyword detection. We will create a machine
learning classifier based on Convolutional Neural Network (CNN). We know
that a CNN architecture comprises a series of convolution filters that are primarily
responsible for the extraction of relevant features from the input. For image data,
the convolution filters perform some standard operations like edge extraction. In all
previous chapters, we have applied CNN on image data. However, in this application,
our inputs are audio waveforms, which is a sequence of data points collected over
a period of one second. Such data are called as time-series data. A CNN may not be
very effective on time-series data. In speech processing, we often represent the time-
series audio signals into a spectrogram for processing. A spectrogram is an image-
like format representing the time-frequency behavior of audio, which is a more
realistic format to be applied to a CNN. In the following section, we will learn more
about the audio spectrogram. We will also see, how the spectrogram information be
used as an input to a CNN for the classification of different keywords.

Audio spectrogram
An audio signal is a combination of various frequency components. Frequency is
measured in the unit of Hertz (Hz). Like any wave, a sound wave is generated due to
vibrating objects like the strings of a guitar or the diaphragm of a drum that causes
some sort of disturbance in the air. In human speech, the disturbance is caused by
our vocal cord. If the frequency of vibration of a wave is in the range between 20
hertz and 20 kilohertz, we can hear it as an audio sound. The fundamental frequency
of audio is termed as pitch. A high pitch sound corresponds to high frequency, and

242 Hands-on TinyML

a low pitch audio corresponds to low frequency. An audio signal can have multiple
frequency components. The frequency range of an audio is termed as spectrum.
The loudness of the audio signal at different frequency components is measured in
absolute power or on a decibel scale. However, an audio signal is non-stationary in
nature, which means that the frequency components and their loudness change with
time. Hence, in audio processing, we often need to analyze both time and frequency
information at the same time. The spectrogram analysis is a popular technique in
audio processing that calculates the loudness or the spectral power at small time
frames of the audio and also at various frequency components present in the signal.

The spectrogram is a time-frequency representation of audio. In simple words, the
spectrogram displays the distribution of different frequencies present in an audio
signal as it varies with time. It also represents the strength of various frequency
components over time. Once computed, the spectrogram can be considered as a two-
dimensional image representing both time and frequency information at the same
time. It represents the time scale horizontally and the frequency scale vertically.
Hence, it can be easily applied to a CNN architecture for classification.

On digital audio signals, the spectrogram is measured using a mathematical
technique called Short-time Fourier Transform (STFT). Here, the Signal is first
broken into equal-length windows of a fixed duration. The window length taken is
small enough so that there is no abrupt change in the major frequency components in
successive windows. Next, we measure the spectrum for each window to determine
the frequency components present in the window along with their strength. The
frequency spectrum of a finite length discrete time signal is computed using the
Discrete Fourier Transform (DFT). The DFT measures two components, spectral
amplitude, and phase. The spectral amplitude is computed for all windows and
plotted over time to display the spectrogram. A detailed discussion of the underlying
mathematics of DFT is beyond the scope of this book. Interested readers can go
through the relevant books on digital signal processing to learn more. Now, we will
implement a Python program to compute the spectrogram of an audio signal.

We will call a specially curated TensorFlow function tf.signal.stft() to compute
the spectrogram of a time signal. As mentioned earlier, the function breaks the
audio into small windows and computes DFT on each window. Here, we need to
pass two parameters as input, frame_length, and frame_step. The first parameters
indicate the length of the window in terms of the number of sample points. The
second parameter defines the step size to proceed. By default, the STFT operation
returns a set of complex numbers, which contain both the spectral amplitude and
phase information. In order to get the spectrogram, we will compute the absolute

Keyword Spotting on Microcontrollers 243

magnitude, which indicates the spectral power. Finally, we will reshape the
spectrogram dimension in an image-like structure (height x width x num_channel)
so that it can be applied to a CNN-like architecture. Refer to the following code2:

>>def get_spectrogram(waveform):

 # Convert the waveform to a spectrogram via STFT.

 Spectrogram = tf.signal.stft(

 waveform, frame_length=127, frame_step=64)

 # Obtain the absolute magnitude of the STFT.

 Spectrogram = tf.abs(spectrogram)

 # Add a third dimension as channel, so that the spectrogram can be
used

 # as image-like input data with convolution layers (which expect

 # shape ('batch_size', 'height', 'width', 'channels').

 spectrogram = spectrogram[…, tf.newaxis]

 return spectrogram

Now, let us plot a few sample waveforms from the audio batch, sample_audio we
created earlier from the training dataset. We will first create a function to display
the spectrogram. The spectrogram image looks like a graph. The x-axis indicates
the time, and the y-axis indicates the frequency in the logarithmic scale. Refer to the
following code:

>>def plot_spectrogram(spectrogram, ax):

 if len(spectrogram.shape) > 2:

 assert len(spectrogram.shape) == 3

 spectrogram = np.squeeze(spectrogram, axis=-1)

 # Convert the frequencies to log

 # Add an epsilon to avoid taking a log of zero.

2 https://www.tensorflow.org/tutorials/audio/simple_audio

244 Hands-on TinyML

 log_spec = np.log(spectrogram.T + np.finfo(float).eps)

 height = log_spec.shape[0]

 width = log_spec.shape[1]

 X = np.linspace(0, np.size(spectrogram), num=width, dtype=int)

 Y = range(height)

 ax.pcolormesh(X, Y, log_spec)

Now, we will call the precceding function to plot a sample audio file and the
corresponding spectrogram as a color image. Refer to the following code:

>>indx = random.randint(0, sample_audio.shape[0]-1)

 label = label_names[sample_label[indx]]

 waveform = sample_audio[indx]

 spectrogram = get_spectrogram(waveform)

 fig, axes = plt.subplots(2, figsize=(12, 8))

 timescale = np.arange(waveform.shape[0])

 axes[0].plot(timescale, waveform.numpy())

 axes[0].set_title('Waveform')

 axes[0].set_xlim([0, 16000])

 plot_spectrogram(spectrogram.numpy(), axes[1])

 axes[1].set_title('Spectrogram')

 plt.suptitle(label.title())

 plt.show()

The preceding code will plot one randomly selected audio sample and the
corresponding spectrogram. It will also print the audio label. Run the code for
several times to get accustomed to the spectrum of different keywords we are going
to detect. Figure 9.2 shows the typical spectrogram of audio samples corresponding
to “off”, “on”, and “silent” audio. Note, in all cases, the duration of the audio is one
second.

Keyword Spotting on Microcontrollers 245

(a)

(b)

246 Hands-on TinyML

(c)

Figure 9.2: Spectrogram of sample audio file (a) off, (b) on, and (c) silent

A spectrogram looks like a colored image. Let us understand the significance of
different colors. A spectrogram depicts as a histogram where different colors indicate
the audio power. The darker colors indicate lower spectral power, and the lighter
colors indicate higher spectral power. For example, there is no power in the duration
of a silent recording. As a result, the entire spectrogram is represented by dark violet
color. For “off” and “on,” as shown in figure 9.2, the word is uttered somewhere in the
middle of the recordings, as shown in the respective plots. The spectral power is the
highest at the temporal location of utterance. This is represented by the yellow color
in the spectrogram. The remaining silent regions in the recording are represented by
appropriate darker colors.

Finally, let us check the spectrogram dimension by running the following command:

>>print('Spectrogram shape:', spectrogram.shape)

Depending upon the STFT parameters selected in the preceding code, the
spectrogram dimension is (249, 65, 1). Finally, we will create a spectrogram dataset
from the original audio dataset. We will also take the corresponding labels. Refer to
the following function:

>>def make_spectrogram_ds(ds):

Keyword Spotting on Microcontrollers 247

 return ds.map(

 map_func=lambda audio,label: (get_spectrogram(audio), label),

 num_parallel_calls=tf.data.AUTOTUNE)

Now, we will use the preceding function to create the training, validation, and test
sets with the spectrogram data:

>>train_spectrogram_ds = make_spectrogram_ds(train_ds)

 val_spectrogram_ds = make_spectrogram_ds(val_ds)

 test_spectrogram_ds = make_spectrogram_ds(test_ds)

Finally, we will perform the following operations to optimize the data reading and
data parsing performance. Refer to the following code:

>>train_spectrogram_ds = train_spectrogram_ds.cache().shuffle(10000).
prefetch(tf.data.AUTOTUNE)

 val_spectrogram_ds = val_spectrogram_ds.cache().prefetch(tf.data.
AUTOTUNE)

 test_spectrogram_ds = test_spectrogram_ds.cache().prefetch(tf.data.
AUTOTUNE)

Now, we have prepared our spectrogram dataset. In the following section, we will
define a CNN model for keyword detection.

Designing a Convolutional Neural Network
model for keyword spotting
We know that CNN is a powerful machine learning algorithms in image processing
related applications. The convolutional operation is the basic building block of a
CNN, which is responsible for feature extraction from the input image. A deep CNN
architecture can have several convolutional layers for more detailed feature extraction,
which may cause a large model due to a large number of trainable parameters. Such
models might not be suitable for TinyML applications. Remember, we are planning to
implement our model on an Arduino Nano. Our target microcontroller is having 256
kilobytes of RAM and 1 megabyte of flash memory. While making an inference, our
entire program, along with the training model, needs to be fitted in the device RAM.
There has to be memory space left for storing the recorded input audio data and
other intermediate variables generated by the inference program during execution.
The program also needs to run on the target hardware in real-time. Hence, we have

248 Hands-on TinyML

to be very much selective in defining the neural network architecture to create a
relatively smaller yet accurate model.

The CNN we are going to use in this application will have a single convolutional
layer followed by a dense layer with four nodes for the prediction of four types of
audio, “off”, “on”, “others”, and “silent”. We will add dropout to the model. You will
be surprised to see that the simple CNN will perform reasonably well in keyword
detection. The following program defines the model:

>>from tensorflow. Python.util.nest import flatten

 from tensorflow.python.ops.gen_nn_ops import Conv2D

 for example_spectrograms, example_spect_labels in train_spectrogram_
ds.take(1):

 input_shape = example_spectrograms.shape[1:]

 num_classes = 4

 model = models.Sequential()

 model.add(layers.Conv2D(8, (8, 8), strides=(2, 2), padding='SAME',
activation='relu', input_shape=input_shape))

 model.add(layers.Flatten())

 model.add(layers.Dropout(0.1))

 model.add(layers.Dense(num_classes, activation = 'softmax'))

Execute model.summary() on Colab to get the model details, as shown in figure 9.3:

Figure 9.3: The CNN architecture for keyword spotting

Keyword Spotting on Microcontrollers 249

The model has around 132K parameters. Next, we will configure it for training by
defining an Adam optimizer having a learning rate of 0.001. We will train it for 100
epochs to reduce the cross entropy loss. Refer to the following code:

>>model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),

 loss=tf.keras.losses.
SparseCategoricalCrossentropy(from_logits=False),

 metrics=['accuracy'])

 model.fit(train_spectrogram_ds, validation_data=val_spectrogram_ds,
epochs=100)

Since you are connected to a GPU runtime, it will only take very less time to complete
the training. After 100 epochs, you can expect a classification accuracy of around
85% on the validation set. Now, evaluate the model on the test set.

>>model.evaluate(test_spectrogram_ds)

You can expect a classification performance similar to the validation set. Now, save
the model in the Colab workspace:

>>model.save('model.h5')

Now, we have the training model. We will apply post-training quantization to
reduce the model size and save it into an equivalent TFLite model. Refer to the
following code:

>>model = tf.keras.models.load_model('model.h5')

 converter = tf.lite.TFLiteConverter.from_keras_model(model)

 converter.optimizations = [tf.lite.Optimize.DEFAULT]

 tflite_quant_model = converter.convert()

 with open('model.tflite', 'wb') as f:

 f.write(tflite_quant_model)

 tflite_models_dir = pathlib.Path('/content/tflite_models/')

 tflite_models_dir.mkdir(exist_ok=True, parents=True)

 tflite_model_file = tflite_models_dir/'model.tflite'

250 Hands-on TinyML

 tflite_model_file.write_bytes(tflite_quant_model)

With this, the TFLite model tflite_quant_model.tflite is stored in your Colab
workspace. The model size is around 136 kilobytes, which can fit in the memory of
an Arduino Nano. You can readily use it to evaluate on the test set. Use the following
code:

>>tflite_model_file = 'tflite_models/model.tflite'

 # Initialize the TFLite interpreter

 interpreter = tf.lite.Interpreter(model_path=tflite_model_file)

 interpreter.allocate_tensors()

 input_info = interpreter.get_input_details()[0]

 input_index = input_info['index']

 scale, offset = input_info['quantization']

 input_index = interpreter.get_input_details()[0]['index']

 output_index = interpreter.get_output_details()[0]['index']

 total_count = 0.0

 accurate_count = 0.0

 for x, y_true in test_spectrogram_ds:

 input_shape = x.shape[1:]

 for count in range(x.shape[0]):

 temp = x[count,:]

 temp = tf.reshape(temp,(1, temp.shape[0], temp.shape[1], temp.
shape[2]))

 interpreter.set_tensor(input_index, temp)

 interpreter.invoke()

 prediction = interpreter.get_tensor(output_index)[0]

Keyword Spotting on Microcontrollers 251

 prediction = np.argmax(prediction)

 if prediction == y_true[count].numpy():

 accurate_count += 1

 total_count += 1

 accuracy = accurate_count/total_count

 print('Accuracy : ', accuracy)

With this, we finish the first part of the chapter on developing a baseline keyword
spotting application in Python. So far, the model has been tested on offline data.
In order to deploy it on Arduino to make real-time inferences, you need to convert
the TFLite model into an equivalent C++ library specific to the device. In Chapter 8,
TensorFlow Lite for Microcontrollers, we have already done that using the command
xxd. In that chapter, we implemented the entire inference program from scratch
on the Arduino IDE for deployment. In this chapter, we will use Edge Impulse,
a specially designed deployment platform for the easy creation of the deployable
Arduino program using a simple user interface. It will internally take care of the
model optimization part depending on the target hardware where the model will be
deployed. We will learn more about all these in the following section.

Do not disconnect the Colab runtime. You will need to use some part of the code
covered in this section later in this chapter.

Introduction to Edge Impulse
Implementing an optimized machine learning model on a microcontroller can be
non-trivial. In the previous chapter, we learned how to convert a TFLite model into
an equivalent library file for Arduino. Of course, the model was trained on Colab.
The library file was used in the inference code which was composed on Arduino
IDE. Remember, we implemented a fairly simple application in the previous chapter,
and we hardly bothered about the memory space and the computing capacity of
the microcontroller. However, these are critical aspects of writing programs for
microcontrollers. In reality, it might be difficult to determine the most optimum
machine learning architecture for a particular application that suits the requirement
of the target hardware. We often rely on trial-and-error. Fortunately, there exists an
open-source platform called Edge Impulse, which helps you to create end-to-end

252 Hands-on TinyML

TinyML applications using a simple graphical user interface. It also suggests you the
most optimum model based on your requirement and target hardware device. In
this chapter, we will learn about the Edge Impulse platform and use it to implement
the keyword spotting project to deploy on the Arduino Nano.

Edge Impulse Studio, commonly known as Edge Impulse, is a leading cloud-based
platform for developing embedded edge ML systems that can be deployed on a
wide range of hardware platforms. The best part of Edge Impulse is that it provides
powerful automation and low-code capabilities to build advanced machine learning
applications. As a result, you can build your own application without having an
in-depth knowledge of machine learning algorithms. You can create end-to-end
practical applications on embedded devices for sensor analytics, audio processing,
and computer vision without writing a single line of code. It has inbuilt automation
tools to assist in creating highly optimized machine learning models, based on user
requirement.

Edge Impulse is free for developers. In order to use it, you need to log into your
account. Go to the following URL in your browser: https://studio.edgeimpulse.com/
login

You will see the following Web page shown in figure 9.4:

Figure 9.4: Edge Impulse Studio home page

Keyword Spotting on Microcontrollers 253

For new users, you need to create an account by clicking on the Sign up option.
You need to provide your e-mail id and set a username and password to create
your account. Now, login to your account with the credentials. You will see a new
Web page similar to figure 9.5. Note that the screenshots shown in the chapter are
indicative. Edge Impulse frequently updates its features. You may find a different
version of Edge Impulse with different properties and user interface when you
actually implement the project at your end.

Figure 9.5: Create a project in Edge Impulse

Implementing keyword spotting in Edge
Impulse
Before we start implementing the project, let us first understand how the keyword
spotting application will be running on Arduino Nano 33 BLE Sense. Like any other
TinyML projects, we first need the training model. In all previous chapters, we
created our training models in Colab. However, this time the model will be created
and optimized on Edge Impulse. You can collect your own data on Edge Impulse.
The inbuilt microphone of Arduino Nano can be used for recording the audio data
in real-time to train a model. The inference will happen in real-time on every one-
second-long audio.

Click on Create new project. Give a suitable name to your project and save it. Your
browser will open the main project dashboard containing various interfaces. Scroll
down to the section named Creating your first impulse. We will mostly work here
to implement various parts of the project. As shown in figure 9.6, the dashboard has
the following parts:

254 Hands-on TinyML

• Acquire data: Here, you provide the necessary data to train your model.
Edge Impulse supports various modes to get the data. You can either record
your own data by connecting the necessary sensors to your computer, can
use the inbuilt camera and microphone of your computer, or can upload an
external dataset.

• Design an impulse: Here, you define and implement the machine learning
architecture pipeline for your application. We mostly perform the following
operation.

 o First, we add a processing block that performs some kind of digital
signal processing (DSP) on the data for feature extraction.

 o Then, we add a machine learning block to complete the pipeline, which
can be a classifier model or a regressor.

 o Train and evaluate the model.
 o Optimize the model based on the target hardware device
• Deploy: Once the model is trained, you can package your model for

deploying in the target hardware. Edge Impulse supports a number of
target hardware, including smartphones and a wide range of commercially
available microcontrollers for which you can convert your application as a
deployable package and deploy.

Refer to figure 9.6:

Figure 9.6: Creating your project from the Edge Impulse dashboard

Keyword Spotting on Microcontrollers 255

Now, let us implement the project in a step-by-step manner. As expected, we will
start by getting the data. Go to the project dashboard and Click on LET'S COLLECT
SOME DATA under the section Acquire data. It will open the following window, shown
in figure 9.7.

Edge Impulse supports various ways to record your data. It also supports a number
of hardware platforms in the form of microcontroller-based development boards.
Many of them come with various inbuilt sensors for real-time data recording. You
can connect the supported development boards to your computer where Edge
Impulse is running and configure them for real-time data collection for your project.
For example, you can configure your Arduino Nano 33 to record the audio data
using the inbuilt microphone to train your impulse. Similarly, you can also use your
smartphone or laptop to record your voice. Finally, you can also upload external pre-
recorded data for your impulse.

As per our problem statement, we need to upload labeled audio samples for all four
target classes, “on”, “off”, “others”, and “silent”. For simplicity, we will primarily
rely on the same Speech Commands dataset that we used in the previous section to
create our baseline keyword spotting model. We will use part of that dataset to get
the audio data corresponding to “on”, “off”, and “others”. Just to get a feel of how
to capture real-time data on Edge Impulse, we will record the silent audio data in
real-time and upload it in our training set.

Refer to figure 9.7:

Figure 9.7: Data collection in Edge Impulse

256 Hands-on TinyML

Let us now upload the audio files corresponding to “on”, “off”, and “others”. Go back
to your Colab workspace, where we implemented the baseline keyword spotting
model. We will write a program on Colab that performs the following steps to create
a small representative dataset to train the keyword spotting model on Edge Impulse:

1. Create another directory mydataset under the parent directory data in your
Colab workspace where the original data has been stored.

2. Create three subdirectories “on”, “off”, and “others” under mydataset.
3. Randomly select 600 samples from each target label of the original dataset

and copy them inside mydataset directory. We cannot select all the files from
the original dataset due to restrictions in file upload size in Edge Impulse.

4. Finally, compress the entire file structure into a zipped file.

The code snippet to execute on the Colab workspace is as follows:

>>import shutil

 os.mkdir('data/dataset')

 os.mkdir('data/dataset/on')

 os.mkdir('data/dataset/off')

 os.mkdir('data/dataset/silence')

 os.mkdir('data/dataset/others')

 target_labels = ['on', 'off', 'others']

 sample_per_label = 600

 for labels in target_labels:

 path = 'data/mydataset/'+labels

 f = os.listdir(path)

 num_files = len(f)

 file_indx = np.arange(num_files)

 random.shuffle(file_indx)

 for i in range(sample_per_label):

 indx = file_indx[i]

 file_name = f[indx]

Keyword Spotting on Microcontrollers 257

 source = path + '/' + file_name

 destination = 'data/dataset/'+labels+'/' + file_name

 # copy only files

 if os.path.isfile(source):

 shutil.copy(source, destination)

Execute the following command to save the newly created dataset as a compressed
ZIP file.

>> !zip -r dataset.zip data/dataset/

Once the compressed file dataset.zip is created and stored in the Colab workspace,
download it from Colab to your host computer and unzip the content. Now, go back
to the data collection window in your Edge Impulse dashboard. Click on Go to
the uploader under Upload data tab (refer to the previous figure 9.7). It will open
a new Web page. Select Upload data. It will open the following window, shown in
figure 9.8:

Figure 9.8: Uploading external data in edge impulse

258 Hands-on TinyML

Click on Choose Files. Now, go to the downloaded and unzipped folder containing
your training data, and select all the audio files from the directory “off” (press Ctrl +
A). Select the radio button Automatically split between training and testing.
Finally, select Enter label under Label and write “off” inside the text box to set the
label (refer to figure 9.8). It will mark all the uploaded files as off. Now, click on Begin
Upload at the bottom. It will upload all the selected files in your Impulse. Repeat the
same procedure to upload all the audio files corresponding to “on” and “others”.
Make sure you label them properly before uploading.

Finally, we need to upload some silent audio clips. As mentioned earlier, we will
record the silent audio on the host computer itself using the inbuilt computer
microphone. Go back and click on the Data acquisition tab on your Edge Impulse
dashboard. Click on Show options. It will open the data collection wizard shown in
figure 9.7.

Make sure your computer has a microphone to record audio. Go to Select your
computer and click on Collect data. Click on the tab Collecting Audio. It will ask
for your permission for accessing the computer microphone. On granting that, you
will find a new window. It will ask for certain information about your recording. Set
the label for the recording as silent duration as 60 seconds. Leave the other parameters
unchanged. It will split the recording randomly in 80:20 ratio for training and testing.
Now, click on Start recording to record a 60 seconds long silent audio using your
computer microphone. While recording, make sure there is no background noise.
Once the recording is completed, the audio file will be automatically stored in your
workspace. We need to perform one more step to break the 60-second-long silent
audio clip into multiple one-second-long audio clips as per the required input data
length for our application.

Go back to the dashboard again and click on Data acquisition. It will show all the
audio clips uploaded and recorded for the project. Click on the three parallel dots
next to the silent audio that you recorded. A new list of options will appear. Click
on the split sample. Another new window will appear. Select Set segment length
(ms): as 1,000 and click on Split at the bottom of the window. It will break the large
clips into one-second-long recordings.

Now, we have all the necessary data to build the keyword-spotting model. Go back
to the Edge Impulse dashboard and click on Impulse design. Next, select Create
impulse. It will open the following Web page shown in figure 9.9:

Keyword Spotting on Microcontrollers 259

Figure 9.9: Creating an Impulse on audio data

It shows the type of data you uploaded for the project (that is, audio time-series
data), the sampling frequency of the recordings, and the window length for making
a prediction. You need to add two blocks to your data to create the impulse. First, you
need to add a processing block to perform the necessary DSP operations for feature
extraction. In our case, the feature extraction block can be a block to convert the
time-series data into the equivalent spectrogram. Next, you need to add a learning
block, which will be the neural network module, to perform the classification task.

Let us first add a processing block to our impulse. In our baseline keyword spotting
model, we converted the raw audio files into a spectrogram, which provides a visual
representation of the audio clip in the time-frequency domain. The spectrogram
format is more suitable to apply to a CNN architecture for effective feature extraction.
The good news is that Edge Impulse includes a number of processing operations
that you can directly use in your impulse. Instead of the spectrogram, we will apply
a different processing operation the Mel Frequency Cepstral Coefficient (MFCC),
which is particularly suitable for speech processing applications.

Click on Add a processing block and select Audio (MFCC) from the list. MFCC
is an audio feature extraction algorithm commonly used in speech processing and
speaker recognition applications. In MFCC, the frequency bands of the audio are
mapped on the Mel scale, which closely approximates the human auditory system.

260 Hands-on TinyML

As a result, MFCC is considered as a better feature extraction technique compared
to the spectrogram-based approach in speech processing applications. The MFCC
components are calculated through the following steps:

1. Break the audio signals into small windows.
2. Calculate the spectrum of the windows via Short-Time Fourier Transform.
3. Map the spectrum power into equivalent Mel scale.
4. Calculate the logarithm of the power components at the Mel frequencies.
5. Calculate the discrete cosine transform of the logarithm powers.
6. The resulting amplitudes represent the MFCC values.

After adding the processing block for MFCC operation to the impulse, add a learning
block to complete the machine learning pipeline. Click on Add a learning block
and select Classification. Based on your data labels, it will automatically show the
output features for your classification model. The entire pipeline is shown in figure
9.10:

Figure 9.10: The classification pipeline on Edge Impulse

Do not forget to save the impulse. Go back to Impulse Design in the dashboard and
click on MFCC just below Create impulse. It will show all the input parameters
for feature extraction. We will use the default values of different parameters for

Keyword Spotting on Microcontrollers 261

feature computation and will compute 13 MFCC parameters as the output of the
processing block. Click on Save parameters. It will open a new Web page for feature
computation. Click on Generate features. It will compute the MFCC feature on the
dataset you uploaded for your application.

Next, click on Classifier under Impulse Design. Here, we will define the neural
network architecture to make classification. This module gives a detailed user
interface where you can add and modify different layers of a neural network
architecture, such as the convolutional layer, pooling layer, dense layer, and so on, to
define your own customized neural network architecture. You can also modify the
parameters of different layers to achieve the optimum classification performance.
Different network hyperparameters, such as the number of training cycles to train
the model, learning rate, percentage of data in training set to be used for validation,
and so on, can also be modified.

Now, let us define a model in Edge Impulse. For simplicity, we will select the
default 1D convolutional architecture along with the default parameters to
quickly build our model. You may require to tweak the parameters to get a better
classification performance. Finally, we will select the target hardware platform for
the deployment of the application. Go to the top right of your Edge Impulse Web
page and select the target device as Arduino Nano 33 BLE Sense. Now, we will
create the training model. Click on Start training. Once the training is done, it will
show the classification performance on the validation set as obtained by both the
base (float32) model and the corresponding quantized (int8) model. You can play
with various hyperparameters of the network and try other network architectures at
your end for a better performance.

Now, we have an optimized model for the target device. Before deploying the model,
we must check whether the generated model is optimized enough to run efficiently on
the target device. For this, we will use the EON Tuner tool, readily available in Edge
Impulse. EON Tuner is an automation tool that provides end-to-end optimization
of a machine learning pipeline, starting from the signal processing block used for
feature extraction to the actual neural network architecture for classification. It helps
you select the most optimized machine learning algorithm for your application,
depending upon the resource of your target hardware device. The biggest advantage
of using EON Tuner is that it internally checks various combinations of signal
processing algorithms and classifier architectures to automatically provide you
with a suitable model for your application within a considerably shorter period of
time that would otherwise take several days to build manually. Moreover, one can
easily create a machine learning model without much domain expertise, which is
particularly important for application developers.

262 Hands-on TinyML

Click on EON Tuner from your dashboard. Click on Configure target. Select Arduino
Nano 33 BLE Sense as the target device. Finally, set the time per inference as 100 ms,
which indicates the desired processing time to make a decision on a one-second-
long audio recording. Click on Save. Now, click on Start Eon Tuner. It will try
different combinations of feature extractors and neural network architectures and
show the classification performance. It will also show the average inference time and
the required memory to run it on the target device.

Once EON Tuner finishes its job, you will see a detailed performance report similar
to what is shown in figure 9.11. It visually represents how different combinations
of feature extractor (DSP) and neural network classifier architectures (NN) have
performed on the data. It also shows the latency and memory used by the DSP
and NN block for computation. The visual representation helps you to select the
most optimized model in terms of classification accuracy, latency, and memory
usage. Depending upon your requirement, you can select any of these models for
deployment.

Refer to figure 9.11:

Figure 9.11: Models suggested by EON Tuner

Keyword Spotting on Microcontrollers 263

We will select the first models from the list provided by EON Tuner, shown in figure
9.11. The selected model uses MFE as the processing block. Similar to MFCC, the
Mel Frequency Energy (MFE) features are also computed from the spectrogram of
the audio signal using Mel filter bank energy. Once the features are computed, the
selected pipeline uses a 1D CNN model for classification. As shown in figure 9.11, it
reports a classification accuracy of 93% with an average latency of 137 ms. Click on
Select to select the configuration from the list to update the primary blocks of your
impulse. Now go to Retrain model from the dashboard to retrain using the selected
model architecture.

Next, go to Model testing. Here you can test your model performance. Click on
Classify All to test your model on the entire test set. Additionally, you can also
record live audio using your computer and test on them.

Finally, go to the Deployment tab. Edge Impulse allows you to deploy your model on
a wide variety of hardware platforms, starting from smartphones to tiny embedded
devices and microcontrollers. You can export your model as a library or can build
it as a firmware. We will export the model as an Arduino library. Select Arduino
library from the list under Create library tab. Make sure that you have checked
Enable EON Compiler and selected a quantized (int8) version of the model that
creates an optimized smaller version of the library. Refer to figure 9.12:

264 Hands-on TinyML

Figure 9.12: Model deployment on Edge Impulse

Click on Analyze optimizations to compare the performance between the optimized
(int8) and the unoptimized (float32) model. Finally, click on Build. The library will
be created and downloaded to your computer in a compressed ZIP format. We will
use this library to create our keyword spotting application on Arduino Nano.

Model deployment
We are finally ready to deploy the keyword spotting application on Arduino.
Connect the Arduino Nano device to your computer using the USB cable. Open the
Arduino IDE. Make sure you have selected the correct board and the port to locate
the Arduino device. Refer to the previous chapter for more details regarding how to
connect the Nano.

Now, on your IDE, go to Sketch → Include Library → Add .ZIP Library and
select the compressed library you created. Next, go to File → Examples and scroll
down the list. You will find the keyword spotting project in the list. Open the project.
It contains one example code for various supported microcontrollers that you can
readily use. Open the sketch nano_ble33_sense → nano_ble33_sense_microphone
to get the relevant code for Arduino Nano.

Keyword Spotting on Microcontrollers 265

Look at the code carefully to understand what operations are performed. An Arduino
program must have two key functions, setup() and loop(). The initialization tasks
are done inside setup(). The following steps are done inside the loop() function:

1. Initially, the program pauses for 2 seconds.
2. Then it records the live audio stream for one second using the inbuilt

micrphone.
3. Applies the keyword spotting algorithm on the recorded data for prediction.

It prints the prediction probability of the recorded audio falling in the four
target classes. Higher the predictd probability, better is the chance the input
data belongs to that class.

4. Repeat Steps 1–3.

Compile and upload the program on Arduino IDE. It will take some time to compile
the program for the first time. Once uploaded, go to Tools → Serial Monitor. Bring
the Arduino device close to your mouth. Keep a look at the instructions shown in the
Serial Monitor. Say “on”, “off”, or some other keywords as soon as the Serial Monitor
indicates that audio is getting recorded. It will record your voice and perform the
feature extraction and classification to show the prediction probabilities for different
target class labels. It will also show the time required to perform the processing and
the classification tasks.

Refer to figure 9.13:

Figure 9.13: Serial Plotter output of keyword spotting application

With these, we have successfully deployed the keyword spotting application on
Arduino. You can edit the program and write your application logic to perform
certain real applications, for example, turning on or turning off an LED based on
your voice command.

266 Hands-on TinyML

When you deploy the model on Arduino, you might experience a poor classification
performance. Remember, you have used a publicly available dataset to train your
model, not your own recorded voice. Introducing your own voice in the training
set may improve the classification performance. Secondly, you are using the inbuilt
microphone of your Arduino Nano for recording of your voice to make inference,
whereas the model is trained on a publicly available dataset where you do not have
any clue on what types of microphones were used in recording. Different microphones
have different frequency responses. A disparity in the quality of the recording
device between the training and the test set can have a significant impact on overall
classification performance. Tuning the network hyperparameters and adding your
own sample voice to the training dataset can improve the model performance. You
can also select and try other neural network architetcures suggested by the EON
Tuner and check their performance upon deployment.

Conclusion
In this penultimate chapter of the book, we have implemented our final TinyML
project of real-time keyword recognition on an Arduino Nano 33 BLE Sense. Keyword
spotting is an important application which is widely used as the backbone of
modern voice-assisting devices such as Alexa-enabled Amazon Echo, Google Home,
or Apple’s Siri. The key objective of this chapter was to understand the different
steps involved in implementing a real-world keyword spotting application from
scratch. We have learnt two key things in the chapter. First, we have implemented
a baseline keyword spotting algorithm in Colab using a CNN and evaluated it on
offline data. Later in this chapter, we have learnt to create a deployable library for
Arduino using Edge Impulse, a free development platform for creating ready-to-use
machine learning models for embedded devices and microcontrollers. Remember,
Edge Impulse frequently updates its features. The screenshots and functionalities
shown in this chapter are specific to one version of Edge Impulse, which might be
different in other versions. However, the readers can get used to a different version
of Edge Impulse with a minimum effort.

We have also explored the EON Tuner, an automation tool that suggests the best
possible machine learning model based on the constraints of the target platform.
Unlike image data, audio data may not produce the desired performance if they
are directly applied to a CNN architecture. Hence, you may require to apply some
exhaustive processing steps on audio before applying to the neural network.
Spectrogram and MFCC-based processing approaches are popularly used in audio
and speech processing applications.

Keyword Spotting on Microcontrollers 267

The classifier performance heavily depends upon the quality of the audio data and
the type of sensor used to record the data. Ideally speaking, the training and the test
data should be recorded using the same kind of device, as different microphones
have different frequency response. You are strongly recommended to train the
model on your own voice and check the classification performance. With this, we
finish implementing the final project of this book. In the final chapter, we will briefly
discuss some recent trends and tools of modern TinyML techniques.

Key facts
• Keyword spotting is a lightweight speech recognition task running at the

device frontend of smart voice-assisted devices.
• Apart from being accurate, keyword spotting algorithms must be real-time

and extremely lightweight.
• The three major parts of keyword spotting are getting the audio, processing,

and classification.
• Some popular audio processing techniques for feature extraction are

Spectrogram, MFCC, and MFE.
• Edge Impulse is a free tool for the easy creation of embedded machine

learning applications.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
We have reached the final chapter of this book. The primary goal of the book is to
offer a concise introduction to TinyML and its various aspects, enabling readers to
develop straightforward and engaging TinyML projects for everyday use. Due to the
swift expansion of digital data production, TinyML has become a rapidly evolving
area within machine learning. The power of modern neural-network, particularly
deep learning techniques, has revolutionized the AI industry. However, neural
networks are computationally expensive and extremely resource hungry. A typical
neural network may have thousands or even few millions of trainable parameters.
Such large neural networks are primarily designed to operate on remote servers,
transmitting data via the internet.

We are living in a digital world. We generate a massive amount of digital data daily,
and it is not practical to transmit all of it to cloud-based servers for processing.
As a result, most of the data goes unused. In TinyML, large neural networks are
optimized to operate efficiently on small edge devices and microcontrollers, which
have limited computing resources. In general, an optimized neural network runs
faster and consumes lower battery power but often comes with reduced accuracy.
While optimizing a neural network, one needs to maintain a trade-off between

Chapter 10
Conclusion and

Further Reading

270 Hands-on TinyML

inference latency and accuracy. The positive aspect is such devices are extremely
low-powered, typically in milliwatt range. As a result, they can seamlessly operate
24 × 7 for several weeks or even years without replacing the battery. Thanks to
advancements in TinyML, it is now feasible to implement on-device intelligence
on billions of smart devices we use in our daily lives without relying on a cloud-
based platform that would consume considerable network bandwidth to transmit
user data for processing and to receive processed results. Some of the appealing
benefits of TinyML include lower inference latency, better energy efficiency, reduced
internet bandwidth, and cost-effectiveness. On top of that, it ensures to preserve
the privacy of user data as the entire processing takes place offline without sending
the data to a remote server. Implementation of TinyML applications can already
be seen in large industries for machine health monitoring, agriculture, continuous
patient monitoring, retail, and energy domain. We also encounter numerous
TinyML applications in our daily lives, such as in our smartphones, cars and large
electronic appliances like refrigerators and washing machines, which are equipped
with powerful microcontrollers for edge analytics. The AI/ML market size was at
USD 15.44 billion in 2021 and is expected to grow from USD 21.17 billion in 2022 to
USD 209.91 billion by 2029. It can be safely assumed that the TinyML market will
significantly grow in the upcoming years.

Structure
In this chapter, we will discuss the following topics:

• Brief learning summary
• TinyML best practices
• AutoML and TinyML
• Edge ML on smartphones
• Future of TinyML

Objectives
In this final chapter of the book, we will briefly recapitulate what we have learnt so
far in the previous chapters of the book. We will talk about some of the best practices
one should follow while developing a TinyML application. We will also briefly talk
about some of the AutoML platforms that have made the development of TinyML
applications much easier. We will finish the chapter by briefly discussing about the
future of TinyML.

Conclusion and Further Reading 271

Brief learning summary
The key objective of the book was to give the readers a brief overview of TinyML
as a technology and to help them getting familiar with implementing TinyML
applications from scratch through practical projects. Rather than explaining every
single mathematical derivation of various machine learning algorithms, we have
focused more on the programming part so that the readers can get the hands-on
experience to create their own applications. In Chapter 1, Introduction to TinyML and
Its Applications, we introduced TinyML as a technology and its applications to the
readers. Chapter 2, Crash Course on Python and TensorFlow Basics, was a crash course
on Python, which is the globally accepted programming language, to implement
neural network models. We learned to use Google Colab to execute Python programs
connecting a Python runtime via the cloud. In the beginning of the chapter, we
talked about popular Python libraries such as NumPy, Matplotlib, and so on, which
are extensively used in implementing machine learning and data science projects.
Later in the chapter, we discussed the basics of TensorFlow, an open-source software
library for quick implementation of machine learning and neural networks.

In Chapter 3, Gearing with Deep Learning, we briefly discussed the key aspects of
neural networks with a focus on Convolutional Neural Network (CNN). CNN is
a powerful neural network architecture popularly used in image processing and
computer vision applications. CNNs comprise a series of convolutional filters
that can automatically extract the relevant features from the input data using a set
kernel with trainable weights. Raw image data can directly be applied to a CNN
without much processing for effective feature extraction to make a classification. We
implemented our first CNN in Chapter 4, Experiencing TensorFlow, for the classification
of handwritten digit images. The model was implemented in TensorFlow using
Keras. Keras is a Python interface of TensorFlow, popularly used for the quick
implementation of neural networks. The model was trained and evaluated on the
publicly available MNIST database.

In Chapter 5, Model Optimization Using TensorFlow, we discussed about various
optimization techniques to reduce the size of neural networks so that they can
effectively run on smaller edge devices. We talked about quantization-aware training and
post-training quantization, which converts a floating point neural network model into
an integer-based model, therefore, causing a 4 × model size reduction. We also talked
about other optimization techniques, such as weight pruning and weight clustering,
which reduce the number of parameters in a neural network. We introduced the
TensorFlow Optimization Toolkit to the readers, a specially designed TensorFlow
library for easy implementation of various optimization techniques in Python. We
also learned to convert a TensorFlow model into the equivalent TensorFlow Lite

272 Hands-on TinyML

model, which is much smaller, faster, and computationally less expensive. Such
models can be efficiently deployed on small edge devices and mobile platforms,
including Android and iOS devices.

In Chapter 6, Deploying My First TinyML Application, we created our first TinyML
project from scratch and deployed it on a real edge device. In this project, we
implemented a CNN classifier for object detection. We used the pretrained weights
of the MobileNet architecture and optimized it using TensorFlow Optimization
Toolkit. The model was evaluated on the publicly available CIFAR-10 dataset for
image classification. The TensorFlow model was converted into an equivalent
TensorFlow Lite (TFLite) model, which was deployed on a Raspberry Pi to make
on-device inferences on offline images. Raspberry Pi is a Linux-based single board
computer popularly used in AI and IoT applications. It also has a Python interpreter;
hence, the inference program can be written in Python.

In Chapter 7, Deep dive into Application Deployment, we created a more practical
application of real-time face recognition on a Raspberry Pi. We used popular open-
source libraries to implement the majority of the image processing tasks and focused
on implementing the end-to-end application pipeline. The application captures live
video streams from a camera connected to a Raspberry Pi and runs on-device edge
analytics for face recognition. The model was purposefully trained on the Pi itself so
that it can be easily retrained for adding or deleting persons for detection.

In Chapter 8, TensorFlow Lite for Microcontrollers, we created our first TinyML
application for microcontrollers. Microcontrollers are more resource-constrained
compared to single board computers. They do not have any operating system. We
used Arduino Nano 33 BLE Sense, a microcontroller-based development board, to
deploy our Project. Arduino has its own programming language, which is similar
to C/C++. There is a dedicated Integrated Development Environment (IDE) for
Arduino which needs to be installed on the host computer to write and compile
the programs in order to deploy on an Arduino device to execute. In this chapter,
we implement a simple neural network application that modulates the intensity of
an LED according to a sinusoid wave. TensorFlow comes with TensorFlow Lite for
Microcontrollers, a highly optimized machine learning library to implement simple
neural network models on microcontrollers. We trained the TensorFlow model on
Colab and converted it into the equivalent TFLite model, which was then further
converted into an equivalent C/C++ library for Arduino. On the Arduino IDE, we
implemented the inference program using TensorFlow Lite for Microcontrollers
APIs and deployed the program on Arduino Nano for real-time inference.

Finally, in Chapter 9, Keyword Spotting on Microcontrollers, we implemented a
speech recognition application on Arduino Nano. To be specific, in that project,

Conclusion and Further Reading 273

we implemented an on-device keyword spotting application. Our learning in this
chapter can be divided into two parts. Initially, we implemented a simple CNN-
based keyword recognition system on Colab using TensorFlow to familiarize with
the speech recognition application. Later, we created an end-to-end keyword detector
model and deployed it on Arduino for real-time speech detection. We learned to use
the Edge Impulse platform, which is a popular tool for quickly building complex
TinyML applications on a browser. It even helps in optimizing large neural network
models depending upon the resource of the target hardware with a minimum effort
in code writing. One can even deploy the program created on Edge Impulse as
firmware to the target microcontroller.

TinyML best practices
TinyML focuses on implementing AI and machine learning on compact edge devices.
Modern machine learning, particularly deep neural network architectures, leads
to sizable training models that are not only computationally demanding but also
necessitate substantial storage space. In TinyML, the goal is to compress the model
size to enable execution on low-powered, resource-limited edge devices. In doing
so, it is essential to minimize performance degradation compared to the original
model. As a result, the emphasis is on optimization rather than mere compression
of a model.

Throughout this book, we have learned to create optimized TinyML applications
using practical examples. However, one should pay special attention to the following
points while developing a new TinyML project:

• Know your target hardware: Choosing the right hardware where the
application will be deployed is an important factor in any TinyML application.
The popular choice of target platforms includes smartphones, Raspberry Pi,
Arduino Nano, ESP32, and so on. Different hardware platforms have their
own pros and cons. The application developers have to judiciously decide
the optimum target platform for their applications. You must have a clear
idea of how much memory your application might require to make an
execution, how much power it could consume, what sensors and interfaces
might be required to get the data, whether you need on-device training, the
approximate price range of your application at the beginning, and so on
before deciding the appropriate hardware.

• Start with a simple network architecture: The modern TinyML applications
mostly rely on neural networks such as CNN as a machine learning
algorithm. CNNs have demonstrated their effectiveness in image processing
and computer vision applications. Although deeper CNN architectures

274 Hands-on TinyML

are typically favored for more intricate feature extraction, simpler neural
networks can also provide impressive results. We experienced in Chapter 9,
Keyword Spotting on Microcontrollers, how a shallow CNN model performed
reasonably well in keyword detection. Smaller neural networks have fewer
parameters, and hence, consume very less device memory to store the
model. The smaller models are inevitably faster and consume low power.
Such neural networks are less prone to overfit. In the TinyML application, it
is recommended to begin with a fairly simple neural network and gradually
go into deeper networks through trial-abd-error. Using smaller kernel
dimension in the convolutional layers of a CNN also ensures lower model
size and fewer mathematical operations.

• Use a combination of optimization techniques: We learned about various
optimization techniques in Chapter 5, Model Optimization Using TensorFlow,
to efficiently compress a neural network. Although different optimization
techniques have their own advantages and limitations, a combination of
various optimization techniques can often result in a better performance. In
the same chapter, we implemented a collaborative optimization pipeline. We
first pruned the baseline CNN by adding sparsity to it. Next, we added weight
clustering to the pruned model, ensuring that the sparsity applied in the
previous step was preserved. Finally, we applied post-training quantization
and converted the model into a full integer. The resulting model was much
smaller with a minimum performance drop, compared to the baseline model.

• Maintain a trade-off: In most of the TinyML applications, we first create
a baseline model and then optimize it into a smaller model to deploy on
the target platform. While optimization, we need to maintain a trade-off
between model size and accuracy. Usually, a smaller model runs faster and
consumes lesser power, but that comes with a drop in model accuracy. While
optimization, you need to maintain a trade-off between model size and
accuracy depending upon your target hardware.

• Writing an optimized inference program: In most TinyML applications,
we train our model on the cloud and make inferences on the target
hardware. On microcontrollers, the inference program is written in a low-
level programming language similar to C/C++. Since microcontrollers
are severely resource constrained, one must be very careful in writing the
inference program. You must have a rough idea of how much memory is
required to store the machine learning model. Apart from that, you should
leave sufficient memory space to store the input data, intermediate variables,
and output. Rather than declaring too many variables in your program, try

Conclusion and Further Reading 275

to reuse them as much as possible. Recall in Chapter 8, TensorFlow Lite for
Microcontrollers, while implementing the inference application for Arduino
using TensorFlow Lite for Microcontrollers library, we had to provide the
Tensor Arena, a pre-defined memory space to allocate memory for the
input–output and to run the interpreter. Defining memory is a critical step
in embedded system programming. While there is no hard and fast rule
in defining the memory space, a clear idea of the potential model size, the
operations used in the model, and the input–output dimension may help in
deciding.

AutoML and TinyML
Throughout this book, we have developed a number of machine learning models
to solve practical problems. There is no single machine learning architecture that
works well on all kinds of problems. Rather, it very much depends upon the type of
application, type of your input data, what you exactly want to perform (classification
or regression), and many other factors. In order to develop a good machine learning
model for an application, the developer should have a good knowledge of the
theories of machine learning. On top, it may also require some application-specific
domain knowledge. While developing a machine learning application, one has to
put major effort into deciding the model architecture that optically addresses the
problem. Usually, there is no hard and fast rule in finding the best architecture for an
application. We mostly rely on empirical techniques, cross-validation, and internal
trial-and-error methods. You also need to tune different hyperparameters specific to
the model. All these, make the whole process time-consuming. One may ask, can we
automate the whole process?

In recent times, there has been plenty of attention on Automated Machine Learning
(AutoML) techniques that enable you to quickly develop high-quality machine
learning models specific to your business needs without having much expertise in
relevant domains. In general, AutoML frameworks are highly optimized software
suites where you give your data and, if possible, the labels as inputs. The platform
runs lots of internal analytics and various combinations of models to come up with
the most optimum machine learning model for you. The key advantage of AutoML
is that it gives an optimum model based on your application within a short period
of time and does not necessitate you to have much expertise in domain knowledge,
therefore, saving significant human effort. Once the data is received, an AutoML
platform performs the following tasks:

• Pre-processing of raw data, which might involve resizing images, converting
color images to grayscale images, and so on.

276 Hands-on TinyML

• Data processing and feature engineering, which might involve different
types of signal and image processing operations such as converting a time-
series data to a spectrogram, applying different filters to an image, and so on.

• Selection of the optimum machine learning model through trial-and-error.
• Tuning of model hyperparameters.
• Selection of the evaluation matrix.
• Converting into a deployable model as per requirement.
• Result analysis.

AutoML can be very useful in creating TinyML applications. They are particularly
helpful in automatically selecting the optimum model for you depending upon the
resource of the target hardware. In Chapter 9, Keyword Spotting on Microcontrollers,
we used the Edge Impulse platform to create the keyword detection application
on Arduino Nano. We used The EON Tuner to find the most suitable model for
the target device. The EON Tuner is a perfect example of an AutoML platform for
TinyML applications. It decomposes your application into a signal processing block
and a neural network architecture and analyses the input data. It suggests a suitable
signal processing block along with the optimum neural network model for your
application. It tries different combinations of signal processing block and neural
network architectures internally from a list of available architectures to summarize
the result on the user data. While summarizing, it takes care of the target platform
where the model is to be deployed and reports the overall classification accuracy,
expected latency, and the overall memory consumed by the signal processing block
and the neural network model during the operation. The user can consider all these
parameters and compare between different models to eventually select the optimum
solution for the application.

With Edge Impulse and Eon Tuner, you can practically deploy a highly optimized
deployable TinyML application on the desired target platform without writing a
single line of code. Moreover, the user does not require much expertise in machine
learning to create their applications. You can use the user interface of Edge Impulse
for easy development of your application. Recall, in the previous chapter, how
quickly you were able to find the optimum keyword-spotting solution for Arduino
Nano using the EON Tuner that would otherwise take much longer for a manual
search.

Another popular AutoML platform for TinyML is Neuton.AI1. Similar to EON Tuner,
Neuton is a neural network framework that helps the developer to build highly
optimized tiny machine learning models and deploy them on microcontrollers and

1 https://neuton.ai

Conclusion and Further Reading 277

other embedded platforms without writing codes. Neuton is also free to use in
developing exciting TinyML applications.

Edge ML on smartphones
Although our main focus in this book was to deploy machine learning models on
microcontroller devices, there is plenty of attention in the industry on improving the
ML experience on other edge devices, mainly smartphones. Modern smartphones
are extremely powerful. Most of the high-end smartphones have dedicated
Graphics Processing Unit (GPU) and Neural Processing Unit (NPU) implemented
in the processor in order to use the power of advanced neural networks. You might
have heard about AI chips. They are specially designed new-generation hardware
accelerators for executing AI operations more efficiently. AI chips consist of Field-
Programmable Gate Arrays (FPGA), GPU, and Application-Specific Integrated
Circuits (ASIC). In short, AI chips accumulate large quantities of smaller transistors
that use less energy and can run faster than big transistors. Unlike CPUs, AI chips have
features that are specially designed and optimized to run AI on the processor. In 2017,
Intel brought in $1 billion from the sale of AI chips. Edge AI Chips implement AI in
an edge computing environment without any connection to the cloud. By 2024, unit
sales of edge AI chips are expected to exceed 1.5 billion. The key benefits of on-device
AI include real-time responsiveness, improved privacy, and enhanced reliability. In
2018, Qualcomm introduced its Qualcomm Artificial Intelligence Engine (QAIE),
which was comprising of several hardware and software components to accelerate
on-device AI-enabled user experiences on select Qualcomm® Snapdragon™ mobile
platforms. The objective was to maximize the implementation of AI on mobile edge
devices without a network connection.

On-device AI has been rapidly adopted by other industry leaders as well. The die
shot of the chip for Samsung’s Exynos 9820 processor reveals that about 5% of the
total chip area is dedicated to AI processors. The Huawei Kirin 970 chip dedicates
2.1% of the die area to the NPU. Apple’s A12 Bionic chip dedicates about 7% of the die
area to machine learning. AI-assisted solutions are readily available in smartphones.
Ultra HDR photography, Raw image processing, 4K Night videography, NLP, and
HD gaming are a few examples where edge ML plays a crucial role.

Future of TinyML
TinyML is one of the fastest-growing fields of machine learning that has the potential
to revolutionize the way we interact with smart devices. Being positioned at the
intersection of embedded systems, machine learning algorithms, and hardware

278 Hands-on TinyML

TinyML enables smart devices to perform complex tasks without relying on
cloud servers or high-power computing resources. Owing to its versatility, cost-
effectiveness, low power consumption, small form factor, and compelling cost,
TinyML has already seen plenty of applications in various industry sectors. In today’s
digital world, we generate huge of amount of data every day. You will be surprised
to know that less than 10% of the generated data reaches the cloud. Intelligence at
the edge can revolutionize the world. The whole idea has become possible thanks to
the recent advances in edge AI, more specifically, the TinyML technology.

We are yet to unleash the full potential of TinyML for the betterment of mankind. It
is a real opportunity for anyone who wants to learn about this technology in order
to create exciting applications for the future. Being low-cost and power efficient,
TinyML applications can run 24x7 on small embedded devices. Such subsystems
can be popularly used in industries for continuous monitoring of large machines as
part of predictive and proactive maintenance. TinyML has also been popularly used
in medical applications for continuous patient monitoring, agriculture, and also in
our home appliances. TinyML is no doubt going to play a vital role to solve practical
problems where traditional machine learning systems cannot work effectively
owing infrastructure restriction. While conventional machine learning will evolve to
solve more complex and sophisticated business problems, TinyML will be more and
more popular to the end customers to solve their everyday needs. As the number of
smart devices and microcontrollers is exponentially growing every day, the TinyML
technology has to grow. Pete Warden, the Technical Lead of TensorFlow Lite, believes
that TinyML will impact almost every industry in the future, including retail,
healthcare, agriculture, manufacturing, and so on. Vijay Janapa Reddi, a professor at
Harvard University and a leading researcher in TinyML, has rightly said that “the
future of machine learning is tiny and bright”.

Further reading
1. Warden, Pete, and Daniel Situnayake. Tinyml: Machine learning with

TensorFlow lite on Arduino and ultra-low-power microcontrollers. O’Reilly
Media, 2019.

2. Shafique, Muhammad, Theocharis Theocharides, Vijay Janapa Reddy, and
Boris Murmann. “TinyML: current progress, research challenges, and future
roadmap.” In 2021 58th ACM/IEEE Design Automation Conference (DAC),
pp. 1303-1306. IEEE, 2021.

3. Iodice, Gian Marco. “TinyML Cookbook.” (2022).
4. Ray, Partha Pratim. “A review on TinyML: State-of-the-art and prospects.”

Journal of King Saud University-Computer and Information Sciences (2021).

Conclusion and Further Reading 279

5. Rajapakse, V., Karunanayake, I. and Ahmed, N., 2022. Intelligence at the
extreme edge: a survey on reformable TinyML. ACM Computing Surveys.

6. Banbury, C.R., Reddi, V.J., Lam, M., Fu, W., Fazel, A., Holleman, J., Huang, X.,
Hurtado, R., Kanter, D., Lokhmotov, A. and Patterson, D., 2020. Benchmarking
tinyML systems: Challenges and direction. arXiv preprint arXiv:2003.04821.

7. David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N.,
Nappier, I., Natraj, M., Wang, T. and Warden, P., 2021. Tensorflow lite micro:
Embedded machine learning for TinyML systems. Proceedings of Machine
Learning and Systems, 3, pp.800-811.

8. Sudharsan, B., Salerno, S., Nguyen, D.D., Yahya, M., Wahid, A., Yadav, P.,
Breslin, J.G. and Ali, M.I., 2021, June. TinyML benchmark: Executing fully
connected neural networks on commodity microcontrollers. In 2021 IEEE 7th
World Forum on Internet of Things (WF-IoT) (pp. 883-884). IEEE

9. Han, Hui, and Julien Siebert. “TinyML: A systematic review and synthesis of
existing research.” In 2022 International Conference on Artificial Intelligence
in Information and Communication (ICAIIC), pp. 269-274. IEEE, 2022.

10. Reddi, Vijay Janapa, Brian Plancher, Susan Kennedy, Laurence Moroney, Pete
Warden, Anant Agarwal, Colby Banbury et al. “Widening access to applied
machine learning with TinyML.” arXiv preprint arXiv:2106.04008 (2021).

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Appendix
ADC Analog to Digital Converter
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
BCE Binary Cross Entropy
CNN Convolutional Neural Network
CPU Central Processing Unit
DAC Digital to Analog Converter
DFT Discrete Fourier Transform
GPIO General Purpose Input Output
GPU Graphics Processing Unit
IDE Integrated Development Environment
IMU Inertial Measurement Unit
IoT Internet of Things
LED LIGHT Emitting Diode
MCU MicroController Unit
MFCC Mel Frequency Cepstral Coefficient
ML Machine Learning
MSE Mean Squared Error
NLP Natural language Processing
RAM Random Access Memory
ReLU Rectified Linear Unit
SBC Single Board Computer
SCP Secure Copy Protocol
SDK Software Development Kit
SSH Secure SHell
STFT Short-Time Fourier Transform
SVM Support Vector Machine
TFLite TensorFlow Lite
TPU Tensor Processing Unit
USB Universal Serial Bus

Symbols
1D convolutional architecture 261

A
activation function 61
Analog to Digital Converter (ADC) 11
Application-Specific Integrated Circuits

(ASIC) 277
Arduino IDE

layout 205
Arduino Nano

setting up 204-208
Arduino Nano 33 BLE Sense 16, 202, 203
Artificial Intelligence (AI) 1
Artificial Neural Network (ANN) 2, 7, 58

activation functions 63, 64
binary cross entropy loss function 62, 63
hidden layers 61
input layer 61
output layer 61
structure 61
theory 59, 60

Artificial Neural Networks (ANN) 85
audio spectrogram 241-247
Automated Machine Learning

(AutoML) 275, 276

Index

B
backpropagation algorithm 66-69
binary cross entropy (BCE) function 62, 63
biometric recognition 176
Bluetooth Low Energy (BLE) module 202

C
categorical cross entropy loss function 95
Central Processing Unit (CPU) 9
classification models

evaluation metrics 105
CNN architecture

convolutional layer 71-76
dense layer 79
fully connected layer 79
implementing 79, 80
input layer 71
output layer 79
pooling layer 78
strided convolution 77, 78
zero padding 77

CNN model
designing, for keyword spotting 247-251

Colab Notebook 22-24
collaborative optimization 138-143
Conv2D 100

284 Hands-on TinyML

arguments 100
Convolutional Neural Network

(CNN) 7, 58-70, 85
architecture 71
functional layers 99-102
implementation 97-100
training 102-104

D
DataFrames 41
deep learning 6, 7, 57, 58
dense layers 62
depthwise separable convolution 148
digital signal processing (DSP) 254
Digital to Analog Converter (DAC) 11
Discrete Fourier Transform (DFT) 242

E
Edge AI 8
edge computing 7
Edge Impulse 251-253

keyword spotting, implementing 253-264
URL 252

Edge ML 8
on smartphones 277

end-to-end Machine Learning algorithm
with TensorFlow 48-54

EON Tuner tool 261, 276
epochs 95
evaluation metrics

classification accuracy 107
classification report 106
confusion matrix 105, 106
F1-score 107
precision 106
recall or sensitivity 106
specificity 106

F
face recognition 178

Raspberry Pi, setting up for 180

face recognition pipeline 179, 180
face recognition project implementation 185

data collection 185-189
model training 189-191
real-time face recognition 192-196

feedforward ANN classifier
data processing 92-94
model implementation 94-97

feedforward network 62
Field-Programmable Gate Arrays

(FPGA) 277
FlatBuffers 110
for loop 30
forward propagation 67
fully connected layers 62
fully connected neural network 62
functional layers, CNN

Convo2D 100
Dense 100
Flatten 100
MaxPooling2D 100

functions, Python 30, 31

G
General Public License (GPL) 20
Google Colab 16
Graphics Processing Unit (GPU) 2, 7, 22, 277
ground (GND) pin 209

H
handwritten numerical digits

classifying, with feedforward
neural network 90-92

I
ILSVRC 70
Inertial Measurement Unite (IMU)

sensor 202
Integrated Circuit (IC) 11
Integrated Development

Environment (IDE) 22, 204

Index 285

Internet of Things (IoT) 7
challenges 8

K
Keras 87

architecture 87
core modules 87
layers 87
model 87
ANN structure, implementing 87-89

keyword 232
keyword spotting 232

audio spectrogram 241-247
CNN model, designing for 247-251
implementing, in Edge Impulse 253-264
model deployment 264-266

keyword spotting algorithm
implementing, in Python 235-241

L
learning block 259
loops, Python 30

M
Machine Learning

overview 4, 5
supervised machine learning 5, 6
unsupervised machine learning 6

Matplotlib 39-41
MaxPooling2D 100

arguments 100
Mean Squared Error (MSE) 48, 62
Mel Frequency Cepstral Coefficient

(MFCC) 259
Mel Frequency Energy (MFE) 263
microcontroller 200
mini-batch size 95
MNIST 90
MobileNet architecture 147

depthwise separable convolution 148
image classification 148-152

implementing, with
transfer learning 153, 154

model evaluation, on test set 157, 158
optimized model, creating for smaller

target device 154-156

N
neural network activation functions 63, 64

ReLU activation function 65, 66
Sigmoid activation function 64
softmax function 66
tanh activation function 65

neural network hyperparameters 80, 81
choice, of optimization algorithm 82
dropout 81, 82
learning rate 81
mini-batch size 82
number of layers 81
regularization 82
specific, to CNN 83

Neural Processing Unit (NPU) 277
neurons 58
Neuton.AI 276
nodes 58
NumPy 32-36

random number generation 37-39

O
overfit 15

P
Pandas 41, 42
PIRGBArray() function 187
pitch 241
plot() function 39
processing block 259
Python 19-21

advantages 20
conditional operations 28, 29
functions 30, 31
libraries 32

286 Hands-on TinyML

logical operations 28, 29
loops 30

Python Imaging Library (PIL) 166
Python variables 24

dictionary 28
lists 26
strings 25
tuples 27, 28

Q
Qualcomm Artificial Intelligence

Engine (QAIE) 277
quantization 121

post-training quantization 121-123
quantization-aware training 123-128

R
randint() function 37
Random Access Memory (RAM) 8
Raspberry Pi 158

accessing remotely 164
components 159, 160
features 159
model deployment, for creating inference

script 165-172
operating system installation 161
setting up 162, 163

Raspberry Pi 3 16
Raspberry Pi 3 Model B+

features 158, 159
setting up 160

Raspberry Pi, for face recognition
libraries, installing 184, 185
Raspberry Pi camera module,

setting up 180-184
setting up 180

Read Only Memory (ROM) 11
ReLU activation function 65, 66

S
Secure Copy Protocol (SCP) 171

secured shell (SSH) protocol 164
Short-time Fourier Transform (STFT) 242
Sigmoid activation function 64
Single Board Computer (SBC) 10, 11
softmax function 66
Software Development Kits (SDK) 15
spectrogram 242
spectrogram analysis 242
spectrum 242

T
tanh activation function 65
Tensor Arena 224
TensorFlow 13, 42, 43, 87

datatypes 44, 45
differentiation 46
end-to-end Machine Learning

algorithm 48-54
features 43
functions 47, 48
graphs 47, 48
tensor 44
variables 45

TensorFlow Lite 13, 110, 111
advantages 111, 112
for Microcontrollers 13
model, creating 112-120

TensorFlow Lite Converter 110
TensorFlow Model Optimization

Toolkit 110, 120, 121
quantization 121
weight clustering 134-138
weight pruning 128-133

Tensor Processing Unit (TPU) 7, 22
TinyML 3, 4, 8

best practices 273, 274
future 277, 278
hardware, for deployment 10-12

TinyML application, on microcontroller
circuit connection 211, 212
inference, on Arduino Nano 222-228

Index 287

model, creating for modulating
potentiometer reading 215-221

potentiometer, modulating 209, 210
potentiometer, reading 212-215
required components 210

TinyML applications
agriculture 9
data acquisition 14
hardware and software

prerequisites 16, 17
healthcare 9
inference, making 16
model creation 14, 15
model deployment, at edge 15
model optimization and conversion,

for edge devices 15
ocean life conservation 10
predictive maintenance 9
process flow, for creating 13

voice-assisted devices 9, 10
transfer learning 147, 152, 153

for implementing MobileNet 153, 154
Transmission Control Protocol (TCP) 164

V
voice assistant, working principles

keyword spotting 234
Natural Language Processing (NLP) 234, 235
Text to Speech 235

voltage input (Vin) pin 209

W
wake-up command 233
weight clustering 134-138
weight pruning 128-133

magnitude-based weight pruning criteria 128
while loop 30

	Book title
	Inner title
	Copyright
	Dedicated
	About the Author
	About the Reviewers
	Acknowledgements
	Preface
	Code Bundle and Coloured Images
	Piracy
	Table of Contents
	Chapter 1: Introduction to TinyML and its Applications
	Introduction
	Structure
	Objectives
	Brief overview of Machine Learning
	Supervised Machine Learning
	Unsupervised Machine Learning

	Machine Learning and Deep Learning
	Edge computing and TinyML
	Applications of TinyML
	Hardware for deploying TinyML
	Software for TinyML
	Process flow of creating TinyML applications
	Prerequisites—hardware and software
	Conclusion
	Key facts

	Chapter 2: Crash Course on Python and TensorFlow Basics
	Introduction
	Structure
	Objectives
	Colab Notebook
	Python variables
	Python strings
	Lists
	Tuple
	Dictionary

	Conditional and logical operations
	Loops in Python
	Functions in Python
	Python libraries
	NumPy library
	Matplotlib library
	Pandas library

	Introduction to TensorFlow
	Tensors and datatypes
	Differentiation in TensorFlow
	Graphs and functions in TensorFlow
	End-to-end Machine Learning algorithm using TensorFlow

	Conclusion
	Key facts
	Further reading

	Chapter 3: Gearing with Deep Learning
	Introduction
	Structure
	Objectives
	Theory of artificial neural networks
	Binary cross entropy loss function
	Neural network activation functions
	Learning the neural network weights—the backpropagation algorithm

	Introduction to Convolutional Neural Network
	Architecture of a CNN
	Putting them all together

	Neural network hyperparameters
	Number of layers
	Learning rate
	Dropout
	Regularization
	Choice of optimization algorithm
	Mini-batch size

	Conclusion
	Key facts
	Further reading

	Chapter 4: Experiencing TensorFlow
	Introduction
	Structure
	Objectives
	Keras and TensorFlow
	Classification of handwritten digits using a feedforward neural network
	Data processing
	Model implementation

	Implementation of a Convolutional Neural Network
	Evaluation metrics in classification models
	Conclusion
	Key facts

	Chapter 5: Model Optimization Using TensorFlow
	Introduction
	Structure
	Objectives
	Experiencing TensorFlow Lite
	TensorFlow Model Optimization Toolkit
	Quantization
	Weight pruning
	Weight clustering

	Collaborative optimization
	Conclusion
	Key facts

	Chapter 6: Deploying My First TinyML Application
	Introduction
	Structure
	Objectives
	The MobileNet architecture
	Depthwise separable convolution

	Image classification using MobileNet
	Brief introduction to transfer learning
	Implementing MobileNet using transfer learning
	Creating an optimized model for a smaller target device
	Evaluation of the model on the test set

	Introduction to Raspberry Pi
	Getting started with the Pi
	Installing the operating system
	Setting up the Pi
	Remotely accessing the Pi

	Deploying the model on Raspberry Pi to make inference
	Conclusion
	Key facts

	Chapter 7: Deep Dive into Application Deployment
	Introduction
	Structure
	Objectives
	System requirement
	The face recognition pipeline
	Setting up the Raspberry Pi for face recognition
	The Raspberry Pi camera module
	Installing the necessary libraries

	Implementation of the project
	Data collection for training
	Model training
	Real-time face recognition

	Conclusion
	Key facts

	Chapter 8: TensorFlow Lite for Microcontrollers
	Introduction
	Structure
	Objectives
	Arduino Nano 33 BLE Sense
	Setting up the Arduino Nano

	First TinyML project on the microcontroller—modulating the potentiometer
	Required components
	Connecting the circuit
	Read potentiometer to control the brightness of the LED
	Creating a TensorFlow model to modulate the potentiometer reading
	Inference on Arduino Nano using TensorFlow Lite for Microcontrollers

	Conclusion
	Key facts

	Chapter 9: Keyword Spotting on Microcontrollers
	Introduction
	Structure
	Objectives
	Working principles of a voice assistant
	Implementation of a keyword spotting algorithm in Python
	Audio spectrogram
	Designing a Convolutional Neural Network model for keyword spotting

	Introduction to Edge Impulse
	Implementing keyword spotting in Edge Impulse
	Model deployment
	Conclusion
	Key facts

	Chapter 10: Conclusion and Further Reading
	Introduction
	Structure
	Objectives
	Brief learning summary
	TinyML best practices
	AutoML and TinyML
	Edge ML on smartphones
	Future of TinyML
	Further reading

	Appendix
	Index
	Back title

